
Randomized Rounding for Congestion Minimization1

• In this lecture, we show how the Chernoff Bound, one of the must-know-facts about random variables,
helps in analyzing randomized rounding algorithms. Before we begin, let us state the Chernoff bound;
we don’t prove it in these notes.

Theorem 1 (Chernoff Bounds). LetX1, X2, . . . , Xn be independent Bernoulli random variables
with each Xi ∈ {0, 1}. Let X =

∑n
i=1Xi. Then, for any ε ∈ (0, 1),

Pr[X ≤ (1− ε)Exp[X]] ≤ e−
ε2 Exp[X]

2 (LT)

and
Pr[X ≥ (1 + ε)Exp[X]] ≤ e−

ε2 Exp[X]
3 (UT1)

For the “upper tail”, that is for “larger” deviations, we have when 1 ≤ t ≤ 4, we have the
following (changing ε to t so as to underscore that the deviation is big)

Pr[X ≥ (1 + t)Exp[X]] ≤ e−
t2 Exp[X]

4 (UT2)

and for t > 4 (really large), we have

Pr[X ≥ (1 + t)Exp[X]] ≤ e−
t ln tExp[X]

2 (UT3)

Remark: Equations (UT1) to (UT3) hold with all Exp[X] occurrences replaced by any up-
per bound Exp[X] ≤ U . Equation (LT) holds when Exp[X] is replaced by any lower bound
Exp[X] ≥ L.

• Congestion Minimization. Consider you are designing an integrated chip, that teeny-weeny thingy
of which there are hundreds of inside the device you are currently reading these notes on. In such a
chip, one has to often connect pins by wires, and because of design/engineering constraints, between
any two pins there are only a finite number of lay-outs in which these wires can be laid down. The
chip designer has to decide on one of these lay-outs per pair. However, it may so happen that for two
different pairs, these lay-outs may coincide for some region, and in that case, the one needs to increase
the height of the chip since one of the wires has to be vertically above the other. One doesn’t one the
chip to be too high, and so it is a very important problem of how to choose the wiring for all necessary
pairs, so as to keep the height to the minimum.

To abstract the above example out, imagine we have a graph G = (V,E) where the vertices corre-
spond to various junctions in the chip including the pins, and the edges correspond to junctions be-
tween which a wire can be connected/placed. We also have k different pairs (s1, t1), (s2, t2), . . . , (sk, tk),
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namely the pins that need to be connected. For each such pair (si, ti), we let Pi denote the collec-
tion of paths between si and ti which can be used to connect; we assume the set Pi is explicitly
given to us, and for this lecture we assume it is not too large. The objective is to choose a path q(i)

from each Pi to lead to a solution S := {q(1), . . . , q(k)}. Given this solution, the congestion cong(e)
of an edge e ∈ E is the number of paths q(i) in which e occurs. The congestion of the solution
cong(S) := maxe∈E cong(e). The objective is to find the solution with the smallest congestion.

• LP Relaxation. The LP relaxation is hopefully clear.

lp := minimize λ (CongMin-LP)∑
p∈Pi

xi,p = 1, ∀1 ≤ i ≤ k (1)

k∑
i=1

∑
p∈Pi:e∈p

xi,p︸ ︷︷ ︸
=congx(e)

≤ λ, ∀e ∈ E (2)

xi,p ≥ 0, ∀1 ≤ i ≤ k, ∀p ∈ Pi (3)

For each i ∈ [k] and each p ∈ Pi, we have a variable xi,p indicating whether p ∈ Pi is picked. (1)
asserts exactly one path is chosen. (2) asserts that the congestion on every edge due to the solution
x, denoted as congx(e), is at most λ, and the objective wishes to minimize this quantity. Since the
objective is trying to minimize this value, for any xi,p’s, λ would indeed be set to maxe congx(e). In
particular, if xi,p ∈ {0, 1}, this would exactly capture the problem.

• Randomized Rounding and Analysis via Chernoff Bounds. Indeed, the rounding algorithm should also
be clear : for each i, consider xi,p as a probability distribution over Pi, and pick a path according to
this distribution.

1: procedure CONG MINIMIZATION(G = (V,E), {si, ti,Pi}i=1...k):
2: Solve (CongMin-LP) to get xi,p.
3: For each i = 1, . . . , k, independently select exactly q(i) ∈ Pi with probability xi,q(i) .

We analyze the algorithm in two regimes (applying two different regimes of Theorem 1).

Theorem 2. Let alg be the random variable indicating the maximum congestion of CONG MIN-
IMIZATION. Then

– If lp ≥ lnm, then Pr[alg ≥ lp+ 4
√
lp lnm] ≤ 1

m3 .

– If lp ≤ lnm, then Pr[alg ≥ lp+
(
8 lnm
ln lnm

)
· lp] ≤ 1

m3 .

Here m is the number of edges in G.
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Remark: So if lp� lnm, then the congestion is (1+o(1))lp, and in any case, it is aO(lnm/ ln lnm)-
approximation.

Proof. Fix an edge e ∈ E. We upper bound the probability that the congestion on this edge is too
large. Then we apply the union bound.

For a fixed i, let Pi(e) := {p ∈ Pi : e ∈ p}. Define a Bernoulli random variable Xi(e) which
is 1 if the path q(i) ∈ Pi(e) and 0 otherwise. Note that Pr[Xi(e) = 1] =

∑
p∈Pi(e)

xi,p, which is
≤ lp due to Equation (2). Crucially observe that Xi(e)’s, for 1 ≤ i ≤ k, are mutually independent.
Furthermore, X(e) :=

∑k
i=1Xi(e) is the congestion on edge e induced by the algorithm. And thus,

Exp[X(e)] =

k∑
i=1

Exp[Xi(e)] =

k∑
i=1

∑
p∈Pi(e)

xi,p ≤︸︷︷︸
Equation (2)

lp

Now depending on how big lp is, we can apply the relevant Chernoff bound.

If lp ≥ lnm, then we can apply (UT2) to get

Pr

[
X(e) ≥

(
1 +

4
√
lnm√
lp

)
· lp

]
≤ e−4 lnm =

1

m4

If lp ≤ lnm, we apply (UT3) with t = 8 lnm
ln lnm

Pr

[
X(e) ≥ lp+

(
8 lnm

ln lnm

)
· lp
]
≤ e−4 lnmlp ≤ 1

m4

Applying the union bound over all m edges, we get the theorem.

Exercise: KK Unlike other randomized approximation algorithms, the above theorem is not
a statement about Exp[alg]. Prove a bound on Exp[alg]. You may find the following identity
useful: Exp[Z] =

∫∞
0 Pr[Z ≥ t]dt for any non-negative random variable.

Notes
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