Vertex Cover in Bipartite Graphs and k-partite Hypergraphs ${ }^{1}$

- In this note, we describe a randomized rounding algorithm which solves the minimum cost vertex cover problem exactly in bipartite graphs. This algorithm is then generalized to give a $\frac{3}{2}$-approximation for minimum cost vertex cover in a tri-partite 3 -hypergraph. Indeed, the generalization works for k partite hypergraphs as well, but we stick to 3 for exposition purposes and leave the generalization to 3 as an exercise.
- Vertex covers in graphs and hypergraphs. A hypergraph $H=(V, E)$ is a generalization of graphs where a (hyper)-edge $e \in E$ is an arbitrary subset of V (instead of being just a pair). A hypergraph is k-uniform if $|e|=k$ for every $e \in E$. Thus, a graph is a 2 -hypergraph. A hypergraph is k-partite if the vertex set can be partitioned into k-parts $V=V_{1} \cup V_{2} \cup \cdots \cup V_{k}$ such that for every edge $e \in E,\left|e \cap V_{i}\right| \leq 1$ for all $1 \leq i \leq k$. In plain English, every edge has at most one vertex from each part. A k-partite k-uniform hypergraph must satisfy the above inequality with equality for all i. This generalizes bipartite graphs. A vertex cover $C \subseteq V$ is one which hits every edge; for all $e \in E$, $e \cap C \neq \emptyset$. The vertex cover problem in graph/hypergraph is to find the smallest cost vertex cover, when each vertex v is associated with a non-negative cost c_{v}.
- LP-relaxation. The algorithm is a rounding algorithm for the following standard LP.

$$
\begin{array}{lll}
\text { opt } \leq \operatorname{lp}(\phi):=\text { minimize } & \sum_{v \in V} c_{v} z_{v} & \\
& \sum_{v \in e} z_{v} \geq 1, \quad \forall e \in E \\
& 0 \leq z_{v} \leq 1, \quad \forall v \in V \tag{2}
\end{array}
$$

Note that the above LP is oblivious to the fact that the graph/hypergraph is k-partite or k-uniform. The rounding algorithm will use the k-partition.

- The Bipartite Graph case. Before describing the hypergrap case, let's see the randomized algorithm for the graph case. Let $V=V_{1} \cup V_{2}$.

```
procedure Randomized Bipartite \(\operatorname{VC}(G=(V, E), c)\) :
    Solve (VC-LP) to obtain \(z_{v}\) for every vertex.
    Sample \(r \in[0,1]\) uniformly at random.
    For every vertex \(v \in V_{1}\), add \(v\) to \(C\) if \(z_{v} \geq r\).
    For every vertex \(v \in V_{2}\), add \(v\) to \(C\) if \(z_{v} \geq 1-r\).
    return \(C\).
```

[^0]Theorem 1. Randomized Bipartite VC returns a subset C which is a vertex cover with probability 1 and $\operatorname{Exp}[c(C)]=\mathrm{lp}$.

Proof. For any edge (u, w) with $u \in V_{1}$ and $w \in V_{2}$, we have $C \cap\{u, w\}=\emptyset$ only if $z_{u}<r$ and $z_{w}<1-r$. However, this contradicts $z_{u}+z_{w} \geq 1$. Therefore, C is a vertex cover with probability 1 .
Furthermore, for any $u \in V_{1}$, the probability $u \in C$ is precisely the probability $r \in\left[0, z_{u}\right]$. Thus $\operatorname{Pr}[u \in C]=z_{v}$ since r is uniformly at random chosen in $[0,1]$ and thus the probability is the ratio of the lengths. Similarly, for any $w \in V_{2}$, the probability $w \in C$ is precisely the probability $r \in\left[1-z_{w}, 1\right]$. Thus $\operatorname{Pr}[w \in C]=z_{w}$. Thus, $\operatorname{Exp}[\operatorname{cost}(C)]=\sum_{v \in V_{1} \cup V_{2}} c_{v} \operatorname{Pr}[v \in C]=$ $\sum_{v \in V_{1} \cup V_{2}} c_{v} z_{v}=\mathrm{lp}$.

Remark: Note that the cost of C can never be less than Ip otherwise we would get a vertex cover of cost $<\mathrm{lp} \leq \mathrm{opt}$. This means that any solution returned, irrespective of r, must be of cost lp , and lp must equal opt. Thus, randomness isn't necessary at all! And furthermore, (VC-LP) has integrality gap 1 when G is a bipartite graph. This can be proved in many ways, but the above is a really slick proof.

- Generalizing to hypergraphs. Before we proceed to the hypergraph case, let's understand what happened above. We wanted to choose two (since the graph was bi-partite) coupled random variables $\left(r_{1}, r_{2}\right)$ with the following plan : (a) for every vertex v, we put it in the cover only if and only if $z_{v} \geq r_{i}$, (b) the variable r_{i} is uniform in some interval $[0, \alpha]$ such that the probability of v being in the solution can then be analyzed to be $1 / \alpha$, and (c) for every edge to be covered, we wanted $r_{1}+r_{2} \leq 1$ with probability 1 ; this would imply the random set we pick is a cover with probability 1 since the z 's sum to at least 1 . We obtained this by selecting $r \in[0,1]$ and setting $r_{1}=r$ and $r_{2}=1-r$, both of which are uniform in $[0,1]$.
We follow the same scheme for hypergraphs. We limit our discussion to tri-partite 3 -uniform hypergraphs and we give a $\frac{3}{2}$-approximation. However, the same ideas give a $k / 2$-approximation for k-partite k-uniform hypergraphs. To make the scheme precise, here is a definition.

Definition 1 (Nice Distribuition). A distribution $\left(r_{1}, r_{2}, r_{3}\right)$ of is called a nice distribution \mathcal{D} if (a) the marginal distribution of each r_{i} is uniform in $\left[0, \frac{2}{3}\right]$, and $(b) r_{1}+r_{2}+r_{3}=1$ with probability 1 .

It is not immediately clear nice distributions exist. In the next bullet point we will show one explicit nice distribution. Before doing so, let us see that they imply a $3 / 2$-approximation for the minimum cost vertex cover problem in tri-partite 3-hypergraphs.

```
procedure RaNDOMIZED TRIPARTITE 3HypVC(Tripartite 3-regular hypergraph G=
( (V}\cup\cup\mp@subsup{V}{2}{}\cup\mp@subsup{V}{3}{},E),\mp@subsup{c}{v}{})
    \triangleright ~ A s s u m e ~ a c c e s s ~ t o ~ n i c e ~ d i s t r i b u t i o n ~ \mathcal { D } .
    Solve (VC-LP) to obtain zv}\mathrm{ for every vertex.
    Sample ( }\mp@subsup{r}{1}{},\mp@subsup{r}{2}{},\mp@subsup{r}{3}{})~\mathcal{D}\mathrm{ .
    For every vertex v\in\mp@subsup{V}{i}{}\mathrm{ , add v to C if zv}\geq\mp@subsup{z}{i}{}\mathrm{ .}
    return C.
```

Theorem 2. Randomized Tripartite 3HypVC returns a subset C which is a vertex cover with probability 1 and $\left.\operatorname{Exp}[c(C)] \leq \frac{3}{2} \cdot \right\rvert\, \mathrm{p}$.

Proof. For any edge $e=\left(v_{1}, v_{2}, v_{3}\right), C \cap e=\emptyset$ implies $\sum_{i=1}^{3} z_{v_{i}}<\sum_{i=1}^{3} r_{i}$, but since the latter is $=1$ we get a contradiction that z 's formed a feasible solution to the LP. Thus, C is a vertex cover with probability 1. Furthemore, for any $1 \leq i \leq 3$ and any $v \in V_{i}$, we get that $\operatorname{Pr}[v \in C]=$ $\operatorname{Pr}\left[r_{i} \in\left[0, z_{v}\right]\right]$. Since the marginal of r_{i} is uniform in $\left[0, \frac{2}{3}\right]$, this probability is at most $\frac{z_{v}}{2 / 3}=\frac{3 z_{v}}{2}$. Note that if $z_{v}>2 / 3$, then we get a strict inequality, otherwise, we get an equality. Therefore, Thus, $\boldsymbol{\operatorname { E x p }}[c(C)] \leq \sum_{v \in V_{1} \cup V_{2} \cup V_{3}} c_{v} \operatorname{Pr}[v \in C] \leq \frac{3}{2} \cdot \sum_{v \in V_{1} \cup V_{2} \cup V_{3}} c_{v} z_{v}=\frac{31 \mathrm{p}}{2}$.

- Nice distributions. We now describe one nice distribution. This, by any means, is not the only way to design one.
- Sample $r \in\left[0, \frac{2}{3}\right]$ and set $r_{1} \leftarrow r$.
- If $r \leq \frac{1}{3}$, set $\left(r_{2}, r_{3}\right) \leftarrow\left(\frac{1}{3}+r, \frac{2}{3}-2 r\right)$.
- Else, if $\frac{1}{3}<r \leq \frac{2}{3}$, set $\left(r_{2}, r_{3}\right) \leftarrow\left(r-\frac{1}{3}, \frac{4}{3}-2 r\right)$.
- Return $\left(r_{1}, r_{2}, r_{3}\right)$.

Lemma 1. The above distribution $\left(r_{1}, r_{2}, r_{3}\right)$ is a nice distribution.
Proof. By design, $r_{1}+r_{2}+r_{3}=1$ with probability 1 . Also, by design, r_{1} is distributed uniformly in $\left[0, \frac{2}{3}\right]$. We need argue only about r_{2} and r_{3}. Now fix a window $[x, x+\delta]$ for $x \in(0,2 / 3)$ and an infinitesimal δ. We need to show that the probability r_{2} (and r_{3}) lies in this window is precisely $\frac{\delta}{2 / 3}$.
For figuring out $\operatorname{Pr}\left[r_{2} \in[x, x+\delta]\right]$, we need to fork into two cases. If $x<1 / 3$, then r_{2} lies in this window iff $r>\frac{1}{3}$ and $x \leq r-\frac{1}{3} \leq x+\delta$. The first occurs with probability $1 / 2$, and conditioned on this the second occurs with probability $\frac{\delta}{1 / 3}$. So in this case, we get that the probability r_{2} is in the $(x, x+\delta)$ window is, as required, $\frac{\delta}{2 / 3}$. When $x \geq 1 / 3$, then we need that r must be $\leq 1 / 3$ and $x \leq \frac{1}{3}+r \leq x+\delta$. The calculation is similar. Thus, in either case, $\operatorname{Pr}\left[r_{2} \in[x, x+\delta]\right]=\frac{\delta}{2 / 3}$ implying r_{2} is uniformly distributed in $\left(0, \frac{2}{3}\right)$.
For figuring out $\operatorname{Pr}\left[r_{3} \in[x, x+\delta]\right]$, note that for any x, we get $r_{3} \in[x, x+\delta]$ if

$$
\frac{1}{3}-\frac{x}{2}-\frac{\delta}{2} \leq r \leq \frac{1}{3}-\frac{x}{2} \text { and when } \frac{2}{3}-\frac{x}{2}-\frac{\delta}{2} \leq r \leq \frac{2}{3}-\frac{x}{2}
$$

Thus, the probability r_{3} is in $(x, x+\delta)$ is the sum of the probabilities of the two events, and each of them occurs with probability $\frac{\delta / 2}{2 / 3}$. Summing, we get that r_{3} is uniformly distributed in $\left(0, \frac{2}{3}\right)$.

Exercise: Show a $\frac{k}{2}$-approximation for the minimum cost vertex cover problem in k-partite k-uniform hypergraphs. To do so, first generalize the notion of "nice distributions". Then use the fact that nice distributions exist for $k=2$ and $k=3$ to generalize for all k. Hint: for even k, just the $k=2$ case is enough.

Notes

The above result is an old theorem of Lovasz [3] from his doctoral thesis. This thesis, unfortunately, is hard to find and presumably in Hungarian. The presentation here follows from the paper [1] by Aharoni, Holzman, and Krivelevich. The latter paper also gives an integrality gap example; more precisely, for any $\varepsilon>0$, they describe a hypergraph for which the smallest vertex cover is of size $\geq\left(\frac{k}{2}-\varepsilon\right)$ Ip. Inspired by this example, the paper [2] by Guruswami, Sachdeva, and Saket showed it is UGC-hard to obtain an $(k / 2-\varepsilon)$-approximation, and indeed NP-hard to obtain an $\left(\frac{k}{2}-1+\frac{1}{2 k}-\varepsilon\right)$-approximation, for any $\varepsilon>0$.

References

[1] R. Aharoni, R. Holzman, and M. Krivelevich. On a theorem of lovász on covers in r-partite hypergraphs. Combinatorica, 16(2):149-174, 1996.
[2] V. Guruswami, S. Sachdeva, and R. Saket. Inapproximability of minimum vertex cover on k-uniform k-partite hypergraphs. SIAM Journal on Discrete Mathematics (SIDMA), 29(1):36-58, 2015.
[3] L. Lovász. On minimax theorems of combinatorics. Doctoral Thesis, Math. Lapok, 26:209-264, 1975. In Hungarian.

[^0]: ${ }^{1}$ Lecture notes by Deeparnab Chakrabarty. Last modified: 17th Jan, 2022
 These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at deeparnab@dartmouth.edu. Highly appreciated!

