
A Crash Course on Linear Programs1

• In these notes, we do a quick revision of basic concepts from the theory of linear programs which are
often used in approximation algorithms.

• A linear program on n variables looks as follows.

minimize c>x︸︷︷︸
:=lp(x)

=
n∑
i=1

cixi (Linear Program)

Ax ≥ b, A ∈ Rm×n,b ∈ Rm

x ∈ Rn

Note that the m constraints above may also include constraints of the form xi ≥ 0 and xi ≤ 1
(represented as −xi ≥ −1).

Geometrically, one should think of each constraint a>i x ≥ bi, where ai is the ith row of A, as a
half space which partitions Rn into two parts, one of which satisfies a>i x ≥ bi, and the other with
< bi. Any vector x which satisfies all the constraints are called feasible solutions. The set of feasible
solutions, F := {x : x is feasible}, therefore is an intersection of half-spaces.

Here is a simple fact which is easily checked.

Fact 1. If x and x′ are feasible, then so is θx+ (1− θ)x′ for any 0 ≤ θ ≤ 1.

Geometrically, the above fact states that the intersection of half-spaces forms a convex set : given any
two feasible points, the line-segment connecting them fully lies in F .

• Basic Feasible Solutions. By definition, any feasible solution x ∈ F satisfies the m-inequalities
Ax ≥ b. Some of these inequalities are tight, that is, we have equality. The rest of the inequalities
have slack. Let T := {i ∈ [m] : a>i x = bi} be the tight rows induced by x. Let B ⊆ T
be a collection of linearly independent rows. Let bB be the corresponding entries of b. Note that
Bx = bB .

A feasible solution x is a basic feasible solution (bfs) if and only if |B| = n, that is, it satisfies exactly
n linearly independent rows with equality. Geometrical, a bfs is the point obtained by the intersection
of n linearly independent hyperplanes. Note that once the linearly independent collection of rows is
fixed, then there is a unique solution satisfying them with equality; it is x = B−1bB .

The following is another simple, but important, fact which shows why bfs are also called extreme
point solutions or vertex solutions.
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Fact 2. If x is a basic feasible solution, then there cannot exist feasible solutions x1 and x2, and
parameter 0 < θ < 1 such that x = θx1 + (1− θ)x2.

Geometrically, a bfs x can’t lie in any non-trivial line segment between two other feasible solutions.
Thus, a bfs is a “corner” of the feasible set F .

Proof. Let B be the set of linearly independent rows which are satisfied with equality. Thus, Bx =
bB , and x is the unique such solution. Suppose that x1 and x2 exist such that θx1 + (1 − θ)x2 = x
for some 1 > θ > 0. Now, since x1 6= x and since x1 is feasible, there must exist some i ∈ B such
that a>i x1 > bi. That is, some inequality in B which is slack at x1. We also know that a>i x2 ≥ bi
and thus (1− θ)a>i x2 ≥ (1− θ)bi. Now we get a contradiction:

bi = a>i x = a>i (θx1 + (1− θ)x2) > θbi + (1− θ)bi > bi

Indeed, a converse is also true.

Fact 3. If x is a feasible solution which is not basic, then there exists two feasible solutions x1

and x2, and a parameter 0 < θ < 1 such that x = θx1 + (1− θ)x2.

Proof. Let T be the set of tight linear inequalities at x. So, for all j /∈ T , we have a>j x > bj . Let

δ := minj /∈T

(
a>j x− bj

)
> 0.

Since x is not basic feasible, the rank of T is not n-dimensional. That is, V := {Tv : v ∈ Rn} is not
an n-dimensional vector space. Which implies, the null-space is non-trivial. In particular, there exists
a non-zero vector v ∈ Rn such that Tv = 0. Define M := maxj /∈T

∣∣∣a>j v∣∣∣ and let ε := 1
2M if M > 0

and ε := 0 otherwise. In any case, −εδM > −δ/2. Now consider the vectors

x1 := x+ εδ · v and x2 := x− εδ · v

Note that x = (x1+x2)/2. We also claim that x1,x2 are feasible. Indeed, Tx1 = Tx2 = Tx = bT .
For any j /∈ T , we see that

a>j x1 = a>j x+ εδ · a>j v ≥ bj + δ − εδM ≥ bj +
δ

2

So, x1 is feasible. Similarly, one argues that x2 is feasible, completing the proof.

Remark: In fact, if one observes the proof carefully, one can in fact see that one can find feasible
solutions x1 and x2 such that if T1 and T2 are the tight inequalities for them respectively, then (a)
T ⊆ T1 ∩ T2, and (b) at least one of them another row j /∈ T which is not in the row-space of T .
This one gets by defining ε correctly. Continuing thus, one can then write any feasible solution
as a convex combination of basic feasible solutions.
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Exercise: KK Given any feasible solution x, describe a procedure which finds basic feasible
solutions x1, . . . ,xt and positive coefficients θ1, . . . , θt such that

∑
i θi = 1 and x =

∑
i θixi.

• Optimal Basic Feasible Solutions. The following fact is quite useful. No matter the objective func-
tion, there always exists an optimum solution which is a basic feasible solution. Geometrically, if
we look at the “parallel hyperplanes” Hγ := {c>x = γ} for some real γ, we want to figure out the
smallest γ for which Hγ ∩ F 6= ∅. For such a smallest γ, the intersection must contain a corner. If
one pauses and thinks a bit, at least in three dimensions this should make sense : a body resting on
any plane must have a corner touching the plane.

Fact 4. For any linear program of the form (Linear Program), there exists an optimal solution x∗

which is basic feasible.

Proof. If x∗ is not basic feasible, then it can be written as a convex combination of basic feasible
solutions. That is, one can find bfs x1, . . . ,xt and non-negative coefficients θ1, . . . , θt with

∑
i θi = 1

such that x∗ =
∑

i θixi. Since

c>x∗ =
t∑
i=1

θi

(
c>xi

)
≥

t∑
i=1

θi

(
c>x∗

)
= c>x∗

we must have equality every where. That is, each xi is an optimal solution and they are, by definition,
basic feasible.

The above fact is often used in the analysis of approximation algorithms in the following way. Suppose
an LP relaxation of some problem looks like

minimize c>x︸︷︷︸
:=lp(x)

: Ãx ≥ b, 0 ≤ xi ≤ 1

where in Ã we have pulled out the so-called non-trivial constraints. Now suppose the number of
linearly independent rows in Ã is r. Or say, we can somehow prove that in any subset of rows of A
that can ever hold simultaneously with equality, the maximum number of linearly independent rows
is r. Then, we can assert that at least (n − r) of the xi’s in a basic feasible solution must be set to
{0, 1}. Or, put differently, the number of fractional variables in any basic feasible solution is at most
r. From a rounding perspective, only these r variables need to be rounded. This has been used in the
design and analysis of many approximation algorithms.

• Local Optimum = Global Optimum. In this bullet point we give a very high-level feel of why linear
programs are tractable, and how one may solve them. One key observation is that local optima, in a
sense we define below, are indeed global optima.

Recall, that any basic feasible solution x is associated with a subset B of n linearly independent rows
of A such that Bx = bB and Ax ≥ b. For the purpose of this discussion, which is high-level as it is,
we assume that the problem given is non-degenerate in the following sense : for every row aj /∈ B,
we in fact have a>j x > bj . That is, the inequality holds strictly. We also assume that the feasible
region is bounded, that is, there is no infinite ray which lies in the feasible region.

We now establish the following fact about basic feasible solutions which allow us to move from one
to the other.
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Fact 5. Let x be a basic feasible solution to Ax ≥ b and let B be the corresponding basis. Then,
for every row i ∈ B there exists a row j ∈ A \ B such that B′ := B = i + j is a basis and
x(i) := (B′)−1bB′ is a feasible solution (and thus also a basic feasible soluton). Furthermore,
B · (x(i) − x) = γiei for some γi > 0, and in particular, the vectors (x(i) − x) span Rn.

The basic feasible solutions x and x′ in the above fact statement are called neighboring bfs’s.

Proof. The ith unit vector ei ∈ Rn is the n-dimensional vector with 1 in the first coordinate and 0
everywhere else. Consider the vector d := B−1ei. Notice thatB ·(x+θd) = bB+θei. In particular,
if θ > 0, we have B · (x + θd) ≥ bB , with equalities everywhere but the ith row. Furthermore, for
any j /∈ B, we can choose θ small enough such that a>j (x + θd) > bj . This is where we are using
the non-degeneracy assumption that a>j x > bj to begin with. In particular, x+ θd is feasible.

Now, there must exist a smallest θ at which one j /∈ B gets “tight”, that is, a>j (x + θd) = bj .
Otherwise, the infinite ray will lie in the feasible region, and we are assuming the feasible region
is bounded. This is the j we are looking for and γi is this θ. Indeed, let x(i) := x + γid, and let
B′ := B − i + j. By design, B′x(i) = bB′ since all but the ith inequality in B is satisfied with
equality, and so does the jth inequality now. Also, B · (x(i) − x) = B · (γid) = γiei. It is also
easy to see B′ is a basis. To show this we only need to show aj is linearly independent to the rows of
B − i. This is simply because a>j d 6= 0 (since the jth inequality went from being not tight to tight)
but a>` d = 0 for all a` ∈ B − i, by design of d.

We say a bfs x is a local optimum solution if for any neighboring bfs x′, we have lp(x) ≤ lp(x′).

Fact 6. A locally optimum basic feasible solution is a global optimum.

Proof. Again, we prove it under the assumption of non-degeneracy and boundedness; both of these
can be removed with some extra work. Under these assumptions, Fact 5 implies that for any bfs x
with basis B, there are n different neighboring bfs’s x(1), . . . ,x(n) such that the vectors (x(i) − x)
span Rn and B(x(i) − x) = γiei for some γi > 0.

Let x∗ be a global optimum bfs. We can write x∗ − x =
∑n

i=1 αi · (x(i) − x) for some αi ∈ R
since the (x(i) − x)’s span Rn. Since Bx = bB and since Bx∗ ≥ bB , we get that B(x∗ − x) ≥ 0.
Substituting, we get that

∑n
i=1 αiγiei ≥ 0. Therefore, since γi > 0, we get αi ≥ 0 for all 1 ≤ i ≤ n.

Therefore,

lp(x∗)− lp(x) = c> (x∗ − x) =

n∑
i=1

αi ·
(
c>x(i) − c>x

)
=

n∑
i=1

αi ·
(
lp(x(i))− lp(x)

)
Since x is a local optimum, each parenthesized item in the RHS is ≥ 0 and since αi ≥ 0, we get the
RHS is ≥ 0. Which implies lp(x) ≤ lp(x∗), completing the proof.
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Remark: The above discussion forms the seeds of the simplex method which was the first
impactful algorithm designed for solving LPs. At a very high level, instead of doing a local
search, the algorithm chooses which row to swap in the basis using a so-called “pivot rule”.
The Simplex Algorithm is still used extensively everywhere LPs are solved, which is in almost all
sectors of engineering. On the other hand, there is no “pivot rule” which is known to terminate
in polynomial time! For, I think, almost every pivot rule designed, researchers have come up with
pathological polytopes where that rule takes super-polynomial time.

• Duality.

• Solving LPs via Cutting Planes.

Notes

Since this is not a course on linear programming, my notes will be short because the alternative is to be
extremely long. All I will say is that everyone who studies linear programming has a favorite source which
enlightened them. For me it was this beautiful text [1] by Bertsimas and Tsitsiklis.
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