EC 1.4 Descents

Def Let
$$\pi \in S_n$$
, $| \leq i \leq n-1$.
i is a descent of π if $\pi_i > \pi_{i+1}$
(arent) $(\pi_i < \pi_{i+1})$
 $Des(\pi) = \{i : \pi_i > \pi_{i+1}\}$ descent set of π
 $des(\pi) = |Des(\pi)|$

$$\underbrace{E_{x}}_{\uparrow} Oes(3417625) = \{2,4,5\} \quad des(3417625) = 3$$

$$\frac{0ef}{A_{m}(x)} = \sum_{\pi \in S_{m}} x^{(i+d_{b}(\pi))} = \sum_{k=1}^{n} \frac{\#[\pi \in S_{m}] de_{b}(\pi) = h-1}{A(m, k)} \times k$$

$$\frac{E \times A_{3}(x) = \chi + 4x^{2} + \chi^{3}}{A_{4}(x) = \chi + 11 \times^{2} + 11 \times^{3} + \chi^{4}}$$

$$\frac{h}{2} = \frac{1}{2} \frac{2}{3} \frac{4}{5} \qquad The rows are symmetric because}{\int 1 + 1} \qquad de_{5}(\pi (\pi - \cdot \pi_{2}\pi_{1})) = m - 1 - de_{5}(\pi (\pi_{2} - \cdot \pi_{m}))$$

$$\frac{1}{4} = \frac{1}{1} \qquad Note also that, in each row, the numbers$$

$$\frac{1}{5} = \frac{1}{26} \frac{6}{66} \frac{26}{26} = \frac{1}{26} \frac{1}{16} \frac{1}{16} + \frac{1}{16} \frac{1}{16} + \frac{1}{16} \frac{$$

Recall Foata's Fundamental transformation:

$$T = (a_{1}, a_{2}, \dots, a_{i_{1}}) (a_{i_{1}+1}, \dots a_{i_{k}}) - \dots (a_{i_{k}+1}, \dots, a_{n})$$

langest elements of their cycles, in arcending order

$$\hat{\pi} = a_{1}a_{2} - \dots a_{i_{1}}a_{i_{1}+1} - \dots \dots a_{n}$$

$$E \times n = (6) (75) (8241) (73) \longrightarrow \hat{\pi} = 675824173$$

Then
$$\pi(a_i) \ge a_i$$
 iff $\begin{cases} a_i < a_{i+1} \\ \sigma_i = n \end{cases}$
i.e., i is not a descent of $\hat{\pi}$
So, $n - des(\hat{\pi}) = \#\{j \in [m] \mid \pi(j) \ge j\} = \text{Wexc}(\pi)$
Def j is an excedence of π if $\pi(j) \ge j \longrightarrow exc(\pi) = \#excedences of \pi$
j is a weak excedence of π if $\pi(j) \ge j \longrightarrow wexc(\pi) = \#excedences of \pi$
 $j = de_s(\hat{\pi}_m \hat{\pi}_{m-1} \cdots \hat{\pi}_i) + | = n - exc(\pi^{-1})$
This proves the following.

$$\frac{Prop}{A(m,k+1)} = \#\{\pi \in S_m \mid de_S(\pi) = h\} = \#\{\pi \in S_m \mid exe(\pi) = h\} = \#\{\pi \in S_m \mid werc(\pi) = h+1\}$$

Ender, in 1707, was interested in the series;

$$\begin{aligned}
\sum_{i \ge 0} x^{i} &= \frac{1}{1-x} & \sum_{i \ge 0} i^{2} x^{i} &= \frac{x+x^{2}}{(1-x)^{3}} \\
\sum_{i \ge 0} i x^{i} &= \frac{x}{(1-x)^{2}} & \sum_{i \ge 0} i^{3} x^{i} &= \frac{x+4x^{2}+x^{3}}{(1-x)^{4}} \\
\frac{P_{i}}{P_{i}} &\sum_{i \ge 0} i^{d} x^{i} &= \frac{A_{d}(x)}{(1-x)^{d+1}} \\
\end{aligned}$$

$$\begin{aligned}
P_{i} & B_{i} \text{ induction on } d; \\
\frac{d-1-d}{d} & Assume & \sum_{i \ge 0} i^{d-1} x^{i} &= \frac{A_{d-1}(x)}{(1-x)^{d}} \\
Differentiate both sides and multiply by x : \\
&\sum_{i \ge 0} i^{d} x^{i} &= x & \frac{A_{d-1}(x)(1-x)^{d} + A_{d-1}(x) d(1-x)^{d-1}}{(1-x)^{2d}} \\
&= \frac{x(1-x)A_{d-1}(x) + dx A_{d-1}(x)}{(1-x)^{d+1}} \\
\end{aligned}$$
Need to show: $A_{A}(x) \stackrel{?}{=} x(1-x)A_{d-1}(x) + dx A_{d-1}(x) \\
&= xA_{d-1}(x) - x^{2}A_{d-1}(x) + dx A_{d-1}(x)
\end{aligned}$

Recall

$$A_{d-1}(x) = \mathbb{Z} A(d-1, k) x^{k}$$

 $A'_{d-1}(x) = \mathbb{Z} k A(d-1, k) x^{k-1}$
 $A(d, k) \stackrel{?}{=} k A(d-1, k) - (k-1) A(d-1, k-1) + d A(d-1, k-1)$
 $= k A(d-1, k) + (d-k+1) A(d-1, k-1)$
which was proved earlier.

$$\frac{P_{nop}}{d \ge 0} = \frac{A_d(x)}{d!} = \frac{1-x}{1-x} e^{(1-x)z}$$

$$\frac{P_{k}}{\sum_{d \ge 0}^{d} A_{d}(x)} \stackrel{zd}{\underset{d \ge 0}{\neq}} = \sum_{\substack{d \ge 0}^{d}} (1-x)^{d+l} \sum_{\substack{i \ge 0}^{d} i^{d}} x^{i} \frac{z^{d}}{d!}$$

$$\frac{P_{k}}{\sum_{\substack{d \ge 0}^{d}} A_{d}(x)} \stackrel{zd}{\underset{d \ge 0}{\neq}} \frac{P_{d}}{p} \frac{P_{d}}{p} \frac{P_{d}}{p} \frac{P_{d}}{p}}{p^{neurious}} = (1-x) \sum_{\substack{i \ge 0}^{d}} x^{i} e^{i(l-x)^{2}}$$

$$= \frac{1-x}{1-xe^{(l-x)^{2}}}$$

ロ

Def Major index of
$$\pi$$
: may $(\pi) = \sum_{i \in \text{Deg}(\pi)} i$
Triboduced by McHukon, mamed "major" by Foods because McHabon
Was a major in the British army.
 $E \times \text{may}(4,2,16.7,3.5) = 1+2+5 = 8$
Thus $\# \{\pi \in S_n \mid \text{inv}(\pi) = k\} = \# \{\pi \in S_n \mid \text{may}(\pi) = k\}$
 $E \times \frac{\pi \epsilon S_3}{123} = 0 \quad 0 \quad \text{Equivalent formulation}:$
 $213 \quad 1 \quad 1 \quad \text{Equivalent formulation}:$
 $213 \quad 2 \quad 1 \quad 2 \quad \text{For } m = 3, \text{ we get}$
 $321 \quad 3 \quad 3 \quad 1+2q+2q^2+q^3$
Pf We construct a bijection
 $U: S_m \longrightarrow S_m$

such that
$$may(\pi) = imr(U(\pi))$$

Build a Man on $X \times X$ where $X = \pi$

Suppose inv
$$(X_k) = maj(\pi_1 \cdots \pi_k)$$

Case $\pi_{1k} > \pi_{k+1} | \quad h \in Des(\pi), no moj(\pi_1 \cdots \pi_{k+1}) = moj(\pi_1 \cdots \pi_k) + k$
Ubust to show inv $(X_{k+1}) = inv (X_k) + k$
In each compatiment C of X_k
 $|----|$ rew inversions
 $\leq \pi_{k+1}$ · opporting the compatiment crudes size(C)-1
 π_{k+1} · opporting π_{k+1} crudes are inversion
with each compatiment = k
 $e_{max} = \pi_{k+1} \int \pi_{k+1} \int$

Note that to know where to split
$$S_{kt_1}$$
 to recover S_{k} ,
one needs to compare the first entry of S_{kt_1} with its last,
and then split before each entry larger/smaller than the
last entry accordingly.

In fact, may and inv satisfy a stronger property:
the joint distribution of (inv, may) is symmetric:
Them
$$\sum_{T \in S_n} q^{inv(T)} t^{may(T)} = \sum_{T \in S_n} q^{may(T)} t^{inv(T)}$$

Ex For n=3, we get

$$1+qt+q^{2}t+qt^{2}+q^{2}t^{2}+q^{3}t^{3}$$

Unfortunately, it is not true that $\operatorname{cmaj}(\Psi(n)) = \operatorname{inv}(n)$

Prop The above bijection
$$(f: \pi \rightarrow \pi)$$
 preserves IDes, i.e.,
IDes $(\pi) = IDes(\pi)$
Pf We need to check that the relative order of is and it

never changes with the cyclic shifts that take
$$S_{k}$$
 to S_{k+1}
Case $\pi_{k} > \pi_{k+1}$ Split after entries $> \pi_{k+1}$

Let
$$\Psi(\sigma) = \Psi((e^{-1}(\sigma^{-1})^{-1}))^{-1}$$
 The bijection $\sigma \mapsto \Psi(\sigma)$
has the property that $inv(\Psi(\sigma)) = maj(\sigma)$
 $maj(\Psi(\sigma)) = inv(\sigma)$.