EC 1.4 Deserts

Def Let $\pi \in S_{n}, \quad 1 \leq i \leq n-1$.
i is a descent of π if $\pi_{i}>\pi_{i+1}$
(ardent) $\quad\left(\pi_{i}<\pi_{i+1}\right)$
$\operatorname{Des}(\pi)=\left\{i: \pi_{i}>\pi_{i+1}\right\}$ descent set of π
$\operatorname{des}(\pi)=|\operatorname{Des}(\pi)|$
Ex $\operatorname{Des}(34176,25)=\{2,4,5\} \quad \operatorname{des}(3417625)=3$
Def Evberian polynomial

$$
A_{n}(x)=\sum_{r \in S_{n}} x^{1+d e s(r)}=\sum_{k=1}^{n} \frac{\#\left\{\pi \in S_{n} \mid \operatorname{des}(n)=k-14\right.}{A(n, k)} x^{k}
$$

Ex
Enberian number

$$
\begin{aligned}
& A_{3}(x)=x+4 x^{2}+x^{3} \\
& A_{4}(x)=x+11 x^{2}+11 x^{3}+x^{4}
\end{aligned}
$$

n	1	2	3	4	5
1	1				
2	1	1			
3	1	4	1		
4	1	11	11	1	
5	1	26	66	26	1

The roue one symminic because $\operatorname{des}\left(\pi_{m} \cdots \pi_{2} \pi_{1}\right)=n-1-\operatorname{deg}\left(\pi_{1} \pi_{2} \cdots \pi_{m}\right)$
Note also that, in each row, the numbers crease and then decease, i.c., $A_{n}(x)$ is unimodal \rightarrow Possible final presentation.
Pron $A(n, k)=k A(n-1, k)+(n-k+1) A(n-1, k-1)$

Pf To obtain a permutation in S_{n} with $k-1$ descents, we insert n in a permutation $\pi \in S_{n-1}$ as follows:

- if π has $k-1$ descents, insect n at any descent or at the end $\leadsto k$ possibilities
- of π hos $k-2$ descents, insect n at any ascent or at the beginning

$$
\leadsto(n-2-(k-2))+1=n-k+1 \text { possibilities }
$$

Recall Foata's Fundamental tranformation:

$$
\pi=\left(a_{1}, a_{2}, \ldots, a_{i_{1}}\right)\left(a_{i_{1}+1}, \ldots a_{i 2}\right) \cdots\left(a_{i_{k+1}}, \cdots, a_{n}\right)
$$

largest elements of their cycles, in ascending order

$$
\hat{\pi}=a_{1} a_{2} \ldots a_{i_{1}} a_{i_{1}+1} \ldots \ldots a_{n}
$$

Ex $\pi=(6)(75)(8241)(73) \mapsto \hat{r}=675824173$
Then

$$
\pi\left(a_{i}\right) \geqslant a_{i} \text { iffy }\left\{\begin{array}{l}
a_{i}<a_{i+1} \\
\text { or } i=n
\end{array}\right.
$$

$i, e ., i$ is rot a decent of $\hat{\pi}$
So,

$$
n-\operatorname{des}(\hat{\pi})=\mathbb{H}\{j \in[n] \mid \pi(j) \geqslant j\}=\operatorname{wexc}(\pi)
$$

Def j is an excedarce of π if $\pi(j) s j \rightarrow \operatorname{exc}(\pi)=$ \#excedares of π j is a weak excetarce of $\pi i j \pi(j) \geqslant j \longrightarrow$ wexc $(\pi)=\#$ weak excedames of π

$$
=\operatorname{deg}\left(\hat{r}_{n} \hat{r}_{n-1} \cdots \hat{r}_{1}\right)+1
$$

$$
=n-\operatorname{exc}\left(\pi^{-1}\right)
$$

This moves the following.

Pron (MaeMakon 1905)

$$
\begin{aligned}
A(n, k+1)=\#\left\{\pi \in S_{n} \mid \operatorname{des}(\pi)=k\right\} & =\#\left\{\pi \in S_{n} \mid \operatorname{exc}(\pi)=k\right\} \\
& =\#\left\{\pi \in S_{n} \mid \operatorname{wexc}(\pi)=k+1\right\}
\end{aligned}
$$

Ever, in 1707, was interested in the series:
diffentiate $\sum_{i \geq 0} x^{i}=\frac{1}{1-x}$

$$
\begin{aligned}
& \sum_{i \geq 0} i^{2} x^{i}=\frac{x+x^{2}}{(1-x)^{3}} \\
& \sum_{i \geq 0} i^{3} x^{i}=\frac{x+4 x^{2}+x^{3}}{(1-x)^{4}} \cdots
\end{aligned}
$$

$\underset{\text { by }}{\operatorname{and} x} \sum_{i \geq 0} i x^{i}=\frac{x}{(1-x)^{2}}$
Pron

$$
\sum_{i \geq 0} i^{d} x^{i}=\frac{A_{d}(x)}{(1-x)^{d+1}}
$$

Pf By induction on d :

$$
d=0
$$

$d-1 \rightarrow d \int$ Assume $\sum_{i \geq 0} i^{d-1} x^{i}=\frac{A_{d-1}(x)}{(1-x)^{d}}$
Differentiate both sides and multiply by x :

$$
\begin{aligned}
\sum_{i \geqslant 0} i^{d} x^{i} & =x \frac{A_{d-1}^{\prime}(x)(1-x)^{d}+A_{d-1}(x) d(1-x)^{d-1}}{(1-x)^{2 d}} \\
& =\frac{x(1-x) A_{d-1}^{\prime}(x)+d x A_{d-1}(x)}{(1-x)^{d+1}}
\end{aligned}
$$

Need to show:

$$
\begin{aligned}
A_{d}(x) & \stackrel{?}{=} x(1-x) A_{d-1}^{\prime}(x)+d x A_{d-1}(x) \\
& =x A_{d-1}^{\prime}(x)-x^{2} A_{d-1}^{\prime}(x)+d x A_{d-1}(x)
\end{aligned}
$$

Recall
$A_{d-1}(x)=\sum A(d-1, k) x^{k}$
$A_{d-1}^{\prime}(x)=\sum k A(d-1, k) x^{k-1}$ Take the coefficient of x^{k} on both sides:

$$
\begin{aligned}
A(d, k) & \stackrel{?}{=} k A(d-1, k)-(k-1) A(d-1, k-1)+d A(d-1 k-1) \\
& =k A(d-1, k)+(d-k+1) A(d-1, k-1)
\end{aligned}
$$

which was moved earlier.
Prop

$$
\sum_{d \geqslant 0} A_{d}(x) \frac{z^{d}}{d!}=\frac{1-x}{1-x e^{(1-x) z}}
$$

Pf

$$
\sum_{d \geqslant 0} A_{d}(x) \frac{z^{d}}{d!}=\sum_{\uparrow \geqslant 0}(1-x)^{d+1} \sum_{i \geqslant 0} i^{d} x^{i} \frac{z^{d}}{d!}
$$

previous Prop

$$
\begin{aligned}
& =(1-x) \sum_{i \geqslant 0} x^{i} \sum_{d \geqslant 0} \frac{i^{d}(1-x)^{d} z^{d}}{d!}=(1-x) \sum_{i \geqslant 0} x^{i} e^{i(1-x) z} \\
& =\frac{1-x}{1-x e^{(1-x) z}}
\end{aligned}
$$

Def Major index of $\pi: \quad \operatorname{maj}(\pi)=\sum_{i \in \operatorname{Des}(\pi)} i$
Introduced by McMahon, named "major" by Footy because McMahon was a major in the Brutish army.
Ex $\operatorname{mag}(4,2,67,35)=1+2+5=8$
The

$$
\#\left\{\pi \in S_{n} \mid \operatorname{mar}(\pi)=k\right\}=\#\left\{\pi \in S_{n} \mid \operatorname{maj}(r)=k\right\}
$$

Ex	$\pi \epsilon S_{3}$	$\operatorname{mag}(\pi)$	$\operatorname{inc}_{m}(\pi)$
123	0	0	
132	2	1	
213	1	1	
231	2	2	
312	1	2	
321	3	3	

Equivalent formulation:

$$
\begin{aligned}
& \sum_{r \in S_{m}} q^{i m v(r)}=\sum_{\pi \in S_{n}} q^{m o j(x)} \\
& \text { For } n=3, \text { we get } \\
& 1+2 q+2 q^{2}+q^{3}
\end{aligned}
$$

If We construct a bijection

$$
\varphi: S_{n} \longrightarrow S_{n}
$$

such that $\operatorname{maj}(r)=\operatorname{inv}(\varphi(r))$
Build a sequence $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{m}$, where $\gamma_{1}=\pi_{1}$.
To get γ_{h+1} from γ_{k} :

- of $\pi_{n}<\pi_{k+1}$ - welt γ_{k} after each element $<\pi_{k+1}$
- if $\pi_{k}>\pi_{k+1}$, spent γ_{k} after each element $>\pi_{n+1}$

Rotate each block cyclically to the right (ie, move the lat enter to the beginning), then add π_{h+1} at the eve.
Finally, let $\varphi(\pi)=\gamma_{n}$.
EX

$$
\begin{aligned}
& \pi=68.39 .4 \cdot 17.25 \quad \quad \operatorname{maj}(\pi)=2+4+5+7=18 \\
& \gamma_{1}=6
\end{aligned}
$$

$\gamma_{2}=6181$ split after each element >3 and rotate $\gamma_{3}=6 / 8 / 31$ whet after each element <9 and rotate $\gamma_{4}=6181391 \ldots>4$ and rotate $x_{5}=6|8| 9|3| 4 \mid \ldots>1 \ldots$ $\gamma_{6}=6|893| 4|1| \cdots-\cdots 7 \cdots$ $\left.\gamma_{7}=6|3| 8|9| 4 \mid 17\right] \mid \cdots 2 \cdots$ $\gamma_{8}=63|894| 71|2| \cdots-125 \ldots$

$$
\varphi(\pi)=\gamma_{q}=364891725
$$

$$
\operatorname{inv}(\varphi(\pi))=5+6+0+1+4+0+2+0+0=18
$$

Claim: At each stage, $\operatorname{imv}\left(\gamma_{k}\right)=\operatorname{maj}\left(\pi_{1} \pi_{2} \ldots \pi_{k}\right)$
We pore the claim by induction on k :
$h=1 \operatorname{ina}\left(x_{1}\right)=0=m \operatorname{maj}^{\prime}\left(\pi_{1}\right)$

Suppose inv $\left(\gamma_{k}\right)=\operatorname{maj}\left(\pi_{1} \cdots \pi_{k}\right)$
Case $\pi_{k}>\pi_{k+1} \mid \quad h \in \operatorname{Deg}(\pi)$, so $\operatorname{mgg}\left(\pi_{1} \cdots \pi_{k+1}\right)=m g j\left(\pi_{1} \cdots \pi_{k}\right)+k$ Want to show $\operatorname{inv}\left(\gamma_{k+1}\right)=\operatorname{inv}\left(\gamma_{k}\right)+k$

In each compartment C of γ_{k}

rotating the compartment creates size $(c)-1$ rex sunersions apperdive π_{n+1} creates are invasion with each compartment
\Rightarrow \# invasions increases by $\sum_{\text {compoutmentis } c}(\operatorname{size}(c)-1)+\#$ compartments $=k$
Case $\pi_{k}<\pi_{k+1}$ In this case, $\operatorname{maj}\left(\pi_{1} \cdots \pi_{k+1}\right)=\operatorname{mog}\left(\pi_{1} \cdots \pi_{k}\right)$
Want to show $\operatorname{imo}\left(\gamma_{k+1}\right)=\operatorname{mov}\left(\gamma_{k}\right)$
In each compartment C of γ_{k}
 with exec compartment
\Rightarrow \# inversions does rot charge.
Finally, φ is a bijection because lock of sis steps can be reversed.

Note that to know where to splat γ_{k+1} to recover γ_{k}, one reeds to compare the fins entry of γ_{n+1} with its last, and then spec before each entry larger / smaller thou the last entry accordingly.

In fact, maj and inv satisfy a stronger property: the joint distribution of (imo, maj) is symmetric:
Thu $\sum_{\pi \in S_{m}} q^{i m v(r)} t^{\text {maj }(\pi)}=\sum_{\pi \in S_{m}} q^{\operatorname{mog}(\pi)} t^{\text {inv }(\pi)}$
Ex For $n=3$, we get

$$
1+q t+q^{2} t+q t^{2}+q^{2} t^{2}+q^{3} t^{3}
$$

Unfortunately, it is rot tue that $\operatorname{mag}(\varphi(\pi))=\operatorname{inv}(\pi)$ i_{n} general, so the above bijection doesn't prove this.

Def $I_{\text {es }}(\pi)=D_{e}\left(\pi^{-1}\right)=\left\{j ; j+1\right.$ is to the left of j in $\left.\pi_{1} \pi_{2} \cdots \pi_{m}\right\}$
Ex $\pi=25143 \quad \operatorname{IDes}(\pi)=\{1,3,4\}$

Def $\operatorname{imaj}(\pi)=\operatorname{moj}\left(\pi^{-1}\right)=\sum_{j \in I \operatorname{Des}(\pi)} j$

Pron The above bijection $\varphi: \pi \rightarrow \tilde{\pi}$ presewes IDes, ie.,

$$
I \operatorname{Des}(\tilde{\pi})=I \operatorname{Des}(\pi)
$$

Pf we reed to check that the relative oren of j and $j+1$ never changes with the cyclic shifts that take γ_{k} to γ_{h+1} Case $\pi_{k}>\pi_{k+1} \quad$ Split offer ewhies $>\pi_{k+1}$
$|\hat{s} s s b|$ stands fa "small", i.e, $<\pi_{k+1}$

$$
b \ldots>\pi_{k+1}
$$

$j \& j+1$ must be both small or both big, so then relative order does rot change.

Case $\pi_{k}<\pi_{k+1} \quad$ Sarre argurnent

Let $\varphi(\sigma)=\varphi\left(\varphi^{-1}\left(\sigma^{-1}\right)^{-1}\right)^{-1}$. The bijection $\sigma \mapsto \varphi(\sigma)$ hos the property that $\operatorname{inv}(\psi(\sigma))=\operatorname{maj}(\sigma)$

$$
\operatorname{mag}(\psi(\sigma))=\sin (\sigma)
$$

