
What I know after taking CS 30

The document serves as a review of the second half of the course.

1 Probability
• Experiments and Outcomes: Sample Space Every time a probabilistic question is asked,

figure out the sample space: that is, figure out what the unknown random experiment is, and
what is the set of possible outcomes. Often represented by Ω.

• Events. Figure out the subset of outcomes you are interested in. This subset is the event you
are interested in.

• The Probability Distribution. Finally, we need to figure out the function or the probability
distribution Pr ∶ Ω → [0,1] such that ∑ω∈Ω Pr[ω] = 1. Given this distribution, we can
answer what the chance/likelihood/probability of an event E is: it is ∑ω∈E Pr[ω].
At some level, modelling assumptions dictate the distribution. Make as few and as natural
assumptions.

• Tree Diagrams. For small problem, the tree diagram which starts with our state of the world
and goes through all possibilities is a sure-shot way of figuring out the probabilities of all
outcomes. It gets unwieldy soon, but very useful for intuition.

• Operations on Events.

– Given an event E , the negation event ¬E is used to denote the event that E doesn’t take
place. That is, it is simply the subset ¬E = Ω ∖ E . Sometimes, ¬E is denoted as E .

Pr[E] +Pr[¬E] = 1

– Given two events E and F , the notation E ∪ F is precisely the union of the subsets in
the sample space. Pr[E ∪F] captures the likelihood that at least one of the events takes
place.

– Given two events E and F , the notation E ∩F is precisely the intersection of the subsets
in the sample space. Pr[E ∩F] captures the likelihood that both the events takes place.

– Two events E and F are disjoint or exclusive if E ∩ F = ∅. That is, they both can’t
occur simultaneously. A collection of events E1,E2, . . . ,Ek are mutually exclusive if
Ei ∩ Ej = ∅ for i ≠ j.

– For mutually exclusive events,

Pr[E1 ∪ E2 ∪⋯Ek] =
k

∑
i=1

Pr[Ei]
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– The Inclusion-Exclusion formula (for two events, aka Baby version) tells us

Pr[E ∪ F] = Pr[E] +Pr[F] −Pr[E ∩ F]

• Conditional Probability. For any two events A and B, we have

Pr[A ∣ B] = Pr[A ∩ B]
Pr[B]

• Chain Rule. For any set of events A1,A2, ⋅,Ak,

Pr[A1 ∩A2 ∩⋯Ak] = Pr[A1] ⋅Pr[A2 ∣ A1] ⋅Pr[A3 ∣ A1 ∩A2]⋯Pr[Ak ∣ A1,A2, . . . ,Ak−1]

• The Law of Total Probability. For any two events A and B, we have

Pr[A] = Pr[A ∣ B] ⋅Pr[B] +Pr[A ∣ ¬B] ⋅Pr[¬B]+

More generally, if B1,B2, . . . ,Bk are k mutually exclusive events which are exhaustive, that
is, ∑ki=1 Pr[Bi] = 1, then

Pr[A] =
k

∑
i=1

Pr[A ∣ Bi] ⋅Pr[Bi]

• Independence. Two events A and B are independent if Pr[A ∩ B] = Pr[A] ⋅Pr[B].
Be careful when figuring out when two events are independent.

• Random Variables. A random variable is a function/mapping X ∶ Ω → Range from the set
of outcomes to a range. Usually the range is the set of natural numbers, but it could be reals,
integers, etc.

• Expectation of a Random Variable. The expectation of a random variable is an “weighted
average” defined as

Exp[X] ∶= ∑
ω∈Ω

X(ω) ⋅Pr[ω]

• Linearity of Expectation. For any k random variables X1,X2, . . . ,Xk, we have

Exp[
k

∑
i=1

Xi] =
k

∑
i=1

Exp[Xi]

One cannot overstate the importance of this above fact.

• Independent Random Variables. Two random variables X and Y are independent if for
any x, y in their ranges

Pr[X = x,Y = y] = Pr[X = x] ⋅Pr[Y = y]

k random variables X1,X2, . . . ,Xk are pairwise independent if any two of them are inde-
pendent. They are mutually independent if for any x1, x2, . . . , xk, we have

Pr[X1 = x1,X2 = x2,⋯,Xk = xk] =
k

∏
i=1

Pr[Xi = xi]
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• Expectation of Product of Mutually Independent Random Variables. If X1, . . . ,Xk are
mutually independent random variables, then

Exp[
k

∏
i=1

Xi] =
k

∏
i=1

Exp[Xi]

• Variance of a Random Variable. Given a random variable X , the variance Var[X] is
defined as

Var[X] ∶= Exp[(X −Exp[X])2] = Exp[X2] − (Exp[X])2

The standard deviation is defined as

σ(X) ∶=
√
Var[X]

• Linearity of Variance for Pairwise Independent Random Variables. Given k pairwise
independent random variables X1, . . . ,Xk, we have

Var[
k

∑
i=1

Xi] =
k

∑
i=1

Var[Xi]

• Concentration around the mean: Chebyshev’s Inequality For any random variable X
and for any t > 0, we have

Pr[ ∣X −Exp[X]∣ ≥ t] ≤ Var[X]
t2

As a corollary we get that the probabilityX is not in the range [Exp[X]−cσ(X),Exp[X]+
cσ(X)] is at most 1

c2 .
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2 Graphs
• Notations and Definitions.

– Given an edge e = (u, v), the vertices u and v are the endpoints of e. We say e connects
u and v. We say that u and v are incident to e.

– Two vertices u, v ∈ V are adjacent or neighbors if and only if (u, v) is an edge.
– The incident edges on v is denoted using the set ∂(v). So,

∂G(v) ∶= {(u, v) ∶ (u, v) ∈ E}

We lose the subscript if the graph G is clear from context.
– Given a vertex v, the neighborhood of v is the set of neighbors of v. This is denoted

sometimes as N(v) or sometimes as Γ(v). So,

NG(v) ∶= ∣{(u, v) ∶ (u, v) ∈ E}∣

if the graph G is clear from context.
– The cardinality of NG(v) is called the degree of vertex v. We denote it using degG(v).

This counts the number of neighbors of v. Note that,

degG(v) = ∣NG(v)∣ = ∣∂G(v)∣

– A vertex v is isolated if its degree is 0. That is, it has no edges connected to it.
– A graph G = (V,E) is called regular if all degrees are equal, that is, degG(v) =

degG(u) for all u and v.
– Given a graph G = (V,E), we use V (G) to denote V and E(G) to denote E. This

notation is useful when we are talking about multiple graphs.

• The Handshake Lemma. In any graph G = (V,E),

∑
v∈V (G)

degG(v) = 2∣E(G)∣

• Perambulations in Graphs. Fix G = (V,E)

– A walk w in G is an alternating sequence of vertices and edges

w = (v0, e1, v1, e2, v2, . . . , ek, vk)

such that the ith edge ei = (vi−1, vi) for 1 ≤ i ≤ k. Both edges and vertices can repeat.

– A trail t in G is a walk with no edges repeating.

– A path p in a graph G is a walk with no vertices repeated.

– A closed walk is a walk whose origin and destination are the same vertex.
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– A circuit is a closed trail of length at least 1.

– A cycle is a circuit with no vertex other than the source and destination repeating.

• Connectivity, Forests, and Trees.

– u is reachable from v in G if there is a walk from u to v in G. A graph G is connected
if any vertex is reachable from another vertex.

– Walk from u to v implies a path from u to v.

– A forest is a graph with no cycles.

– A tree is a forest which is connected.

– Trees have leaves.

• Tree Theorem.
Let G = (V,E) be a graph. The following are equivalent statements.

1. G is a tree.
2. G has no cycles and adding any edge to G creates a cycle.
3. Between any two vertices in G there is a unique path.
4. G is connected, and deleting any edge from G disconnects the graph, and the resulting

graph has exactly two connected components.
5. G is connected and ∣E∣ = ∣V ∣ − 1.
6. G has no cycles and ∣E∣ = ∣V ∣ − 1.

• Bipartite Graphs.
A graph G = (V,E) is bipartite if the vertex set V can be partitioned into V = L ∪ R and
L ∩R = ∅ such that every edge (x, y) has exactly one endpoint in L and the other endpoint
in R.

G is bipartite ⇔ G has no cycles of odd length

• Matchings.
A matching M ⊆ E is a subset of edges such that no two edges in M share an endpoint. In
other words, a matching is a collection of pairwise disjoint set of edges.

• Matchings in Bipartite Graphs: Hall’s Theorem.
Let G = (L ∪R,E) be a bipartite graph. A matching M is an L-matching if every vertex of
L is an endpoint of some edge in M .

G has an L-matching ⇔ For every subset S ⊆ L, ∣NG(S)∣ ≥ ∣S∣
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3 Numbers
• Modular Arithmetic: Definition.

– a mod n is the unique integer r ∈ {0,1,2, . . . , n − 1} such that a divided by n leaves
remainder r.

– The set {0,1, . . . , n − 1} is called the ring of integers modulo n, and is denoted as Zn
often.

– Two integers are equivalent modulo n, or a ≡n b if and only if a mod n = b mod n.

• Algebra in Modular Arithmetic. Below, a, b, c are all integers, and n is a positive integer.

– a ≡n b and b ≡n c implies a ≡n c.
– a ≡n b ⇒ (a + c) ≡n (b + c).

– a ≡n b ⇒ a ⋅ c ≡n b ⋅ c.
– a ≡n b ⇒ ac ≡n bc if c > 0.

But beware that the last two implications go only in one direction.That is,

a ⋅ c ≡n b ⋅ c doesn’t necessarily imply a ≡n b

So you can’t “divide off” c from both sides. To see this, note 2 ⋅ 4 ≡6 5 ⋅ 4 ≡6 2 but 2 /≡6 5.

Similarly,
ac ≡n bc doesn’t necessarily imply a ≡n b

So you can’t “take 1/cth power. To see this, note 52 ≡8 32 ≡8 1, but 5 /≡8 3.

• Modular Exponentiation. A pretty fast way to compute ab mod n.

• Greatest Common Divisor (GCD).

– gcd(a,n) is the largest number dividing both a and n.
– Euclid’s recursive algorithm to find GCD of any two numbers.
– Bezout’s Theorem: gcd(a,n) = g implies the existence of two integers x, y such that
xa + yn = g.

– The above (x, y) can be found by Extended GCD algorithm.
– In fact, g is the smallest positive integer which can be written as xa + yn.

• Co-prime or Relatively prime numbers.
Two numbers a,n are co-prime or relatively prime if and only if gcd(a,n) = 1. Co-prime
numbers have lots of nice properties. In particular, the following facts are useful (you should
be able to prove all of them using Bezout’s Theorem mentioned above).

– If gcd(a,n) = 1, and ab ≡n 0, then b ≡n 0. As a consequence, we get
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– If gcd(a,n) = 1, and a ⋅ b ≡n a ⋅ c, then b ≡n c.
– If a prime p divides a and p divides b, then p divides ab.
– If gcd(a,n) = 1 and gcd(b, n) = 1, then gcd(ab, n) = 1.

• The Multiplicative Inverse.
Co-prime numbers have inverses; a supremely helpful fact. For any two pair of coprime
numbers a and n, the multiplicative inverse of a in the ring Zn, also called the multiplicative
inverse of a modulo n, is the unique element b in Zn such that ab ≡n 1. We can use the
Extended Euclid’s GCD algorithm to compute the multiplicative inverses.

• Fermat’s Little Theorem.

For any prime p and number a such that gcd(a, p) = 1, we have

ap−1 = 1 mod p, or, more concisely, ap−1 ≡p 1

• Public Key Cryptography.
A conceptual breakthrough due to Diffie and Hellman from 1976 which allowed secrets to be
shared without the need for keys to be shared. Diffie-Hellman win Turing Award in 2015.

– Alice wants to send a message m to Bob.
– Bob generates two keys: a public key pk which is told to all; a secret key sk which is

only known to him.
– Bob also publishes two algorithms Enc and Dec.
– Alice uses Enc(m,pk) to get the encrypted cipher c.
– Bob uses Dec(c, sk, pk) to decrypt the cipher.
– Eve can’t figure m out given Enc(m,pk) and pk.

• RSA protocol.
A fantastic algorithm implementing public key cryptography. Invented by Rivest, Shamir,
Adleman in 1978. Rivest-Shamir-Adleman awarded Turing award in 2002.

– Bob picks two large primes p, q. Let N ∶= pq and φ ∶= (p − 1)(q − 1).
– Bob picks another number e such that gcd(e, φ) = 1.
– Bob figures out d ≡ e−1 mod φ, that is, d is the multiplicative inverse of e in Zφ.
– Bob’s public key is (e,N). Bob’s secret key is d.
– Encryption: Alice uses (e,N) to encrypt m↦me mod N .
– Decryption: Bob uses (d,N) to decrypt cipher c↦ cd mod N .
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