What I know after taking CS 30

The document serves as a review of the second half of the course.

1 Probability

- Experiments and Outcomes: Sample Space Every time a probabilistic question is asked, figure out the sample space: that is, figure out what the unknown random experiment is, and what is the set of possible outcomes. Often represented by Ω.
- Events. Figure out the subset of outcomes you are interested in. This subset is the event you are interested in.
- The Probability Distribution. Finally, we need to figure out the function or the probability distribution $\operatorname{Pr}: \Omega \rightarrow[0,1]$ such that $\sum_{\omega \in \Omega} \operatorname{Pr}[\omega]=1$. Given this distribution, we can answer what the chance/likelihood/probability of an event \mathcal{E} is: it is $\sum_{\omega \in \mathcal{E}} \operatorname{Pr}[\omega]$.

At some level, modelling assumptions dictate the distribution. Make as few and as natural assumptions.

- Tree Diagrams. For small problem, the tree diagram which starts with our state of the world and goes through all possibilities is a sure-shot way of figuring out the probabilities of all outcomes. It gets unwieldy soon, but very useful for intuition.

- Operations on Events.

- Given an event \mathcal{E}, the negation event $\neg \mathcal{E}$ is used to denote the event that \mathcal{E} doesn't take place. That is, it is simply the subset $\neg \mathcal{E}=\Omega \backslash \mathcal{E}$. Sometimes, $\neg \mathcal{E}$ is denoted as $\overline{\mathcal{E}}$.

$$
\operatorname{Pr}[\mathcal{E}]+\operatorname{Pr}[\neg \mathcal{E}]=1
$$

- Given two events \mathcal{E} and \mathcal{F}, the notation $\mathcal{E} \cup \mathcal{F}$ is precisely the union of the subsets in the sample space. $\operatorname{Pr}[\mathcal{E} \cup \mathcal{F}]$ captures the likelihood that at least one of the events takes place.
- Given two events \mathcal{E} and \mathcal{F}, the notation $\mathcal{E} \cap \mathcal{F}$ is precisely the intersection of the subsets in the sample space. $\operatorname{Pr}[\mathcal{E} \cap \mathcal{F}]$ captures the likelihood that both the events takes place.
- Two events \mathcal{E} and \mathcal{F} are disjoint or exclusive if $\mathcal{E} \cap \mathcal{F}=\varnothing$. That is, they both can't occur simultaneously. A collection of events $\mathcal{E}_{1}, \mathcal{E}_{2}, \ldots, \mathcal{E}_{k}$ are mutually exclusive if $\mathcal{E}_{i} \cap \mathcal{E}_{j}=\varnothing$ for $i \neq j$.
- For mutually exclusive events,

$$
\operatorname{Pr}\left[\mathcal{E}_{1} \cup \mathcal{E}_{2} \cup \cdots \mathcal{E}_{k}\right]=\sum_{i=1}^{k} \operatorname{Pr}\left[\mathcal{E}_{i}\right]
$$

- The Inclusion-Exclusion formula (for two events, aka Baby version) tells us

$$
\operatorname{Pr}[\mathcal{E} \cup \mathcal{F}]=\operatorname{Pr}[\mathcal{E}]+\operatorname{Pr}[\mathcal{F}]-\operatorname{Pr}[\mathcal{E} \cap \mathcal{F}]
$$

- Conditional Probability. For any two events \mathcal{A} and \mathcal{B}, we have

$$
\operatorname{Pr}[\mathcal{A} \mid \mathcal{B}]=\frac{\operatorname{Pr}[\mathcal{A} \cap \mathcal{B}]}{\operatorname{Pr}[\mathcal{B}]}
$$

- Chain Rule. For any set of events $\mathcal{A}_{1}, \mathcal{A}_{2}, \cdot, \mathcal{A}_{k}$,

$$
\operatorname{Pr}\left[\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \cdots \mathcal{A}_{k}\right]=\operatorname{Pr}\left[\mathcal{A}_{1}\right] \cdot \operatorname{Pr}\left[\mathcal{A}_{2} \mid \mathcal{A}_{1}\right] \cdot \operatorname{Pr}\left[\mathcal{A}_{3} \mid \mathcal{A}_{1} \cap \mathcal{A}_{2}\right] \cdots \operatorname{Pr}\left[\mathcal{A}_{k} \mid \mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{k-1}\right]
$$

- The Law of Total Probability. For any two events \mathcal{A} and \mathcal{B}, we have

$$
\operatorname{Pr}[\mathcal{A}]=\operatorname{Pr}[\mathcal{A} \mid \mathcal{B}] \cdot \operatorname{Pr}[\mathcal{B}]+\operatorname{Pr}[\mathcal{A} \mid \neg \mathcal{B}] \cdot \operatorname{Pr}[\neg \mathcal{B}]+
$$

More generally, if $\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{k}$ are k mutually exclusive events which are exhaustive, that is, $\sum_{i=1}^{k} \operatorname{Pr}\left[\mathcal{B}_{i}\right]=1$, then

$$
\operatorname{Pr}[\mathcal{A}]=\sum_{i=1}^{k} \operatorname{Pr}\left[\mathcal{A} \mid \mathcal{B}_{i}\right] \cdot \operatorname{Pr}\left[\mathcal{B}_{i}\right]
$$

- Independence. Two events \mathcal{A} and \mathcal{B} are independent if $\operatorname{Pr}[\mathcal{A} \cap \mathcal{B}]=\operatorname{Pr}[\mathcal{A}] \cdot \operatorname{Pr}[\mathcal{B}]$.

Be careful when figuring out when two events are independent.

- Random Variables. A random variable is a function/mapping $X: \Omega \rightarrow$ Range from the set of outcomes to a range. Usually the range is the set of natural numbers, but it could be reals, integers, etc.
- Expectation of a Random Variable. The expectation of a random variable is an "weighted average" defined as

$$
\operatorname{Exp}[X]:=\sum_{\omega \in \Omega} X(\omega) \cdot \operatorname{Pr}[\omega]
$$

- Linearity of Expectation. For any k random variables $X_{1}, X_{2}, \ldots, X_{k}$, we have

$$
\operatorname{Exp}\left[\sum_{i=1}^{k} X_{i}\right]=\sum_{i=1}^{k} \operatorname{Exp}\left[X_{i}\right]
$$

One cannot overstate the importance of this above fact.

- Independent Random Variables. Two random variables X and Y are independent if for any x, y in their ranges

$$
\operatorname{Pr}[X=x, Y=y]=\operatorname{Pr}[X=x] \cdot \operatorname{Pr}[Y=y]
$$

k random variables $X_{1}, X_{2}, \ldots, X_{k}$ are pairwise independent if any two of them are independent. They are mutually independent if for any $x_{1}, x_{2}, \ldots, x_{k}$, we have

$$
\operatorname{Pr}\left[X_{1}=x_{1}, X_{2}=x_{2}, \cdots, X_{k}=x_{k}\right]=\prod_{i=1}^{k} \operatorname{Pr}\left[X_{i}=x_{i}\right]
$$

- Expectation of Product of Mutually Independent Random Variables. If X_{1}, \ldots, X_{k} are mutually independent random variables, then

$$
\operatorname{Exp}\left[\prod_{i=1}^{k} X_{i}\right]=\prod_{i=1}^{k} \operatorname{Exp}\left[X_{i}\right]
$$

- Variance of a Random Variable. Given a random variable X, the variance $\operatorname{Var}[X]$ is defined as

$$
\operatorname{Var}[X]:=\operatorname{Exp}\left[(X-\operatorname{Exp}[X])^{2}\right]=\operatorname{Exp}\left[X^{2}\right]-(\operatorname{Exp}[X])^{2}
$$

The standard deviation is defined as

$$
\sigma(X):=\sqrt{\operatorname{Var}[X]}
$$

- Linearity of Variance for Pairwise Independent Random Variables. Given k pairwise independent random variables X_{1}, \ldots, X_{k}, we have

$$
\operatorname{Var}\left[\sum_{i=1}^{k} X_{i}\right]=\sum_{i=1}^{k} \operatorname{Var}\left[X_{i}\right]
$$

- Concentration around the mean: Chebyshev's Inequality For any random variable X and for any $t>0$, we have

$$
\operatorname{Pr}[|X-\operatorname{Exp}[X]| \geq t] \leq \frac{\operatorname{Var}[X]}{t^{2}}
$$

As a corollary we get that the probability X is $\boldsymbol{n o t}$ in the range $[\operatorname{Exp}[X]-c \sigma(X), \operatorname{Exp}[X]+$ $c \sigma(X)]$ is at most $\frac{1}{c^{2}}$.

2 Graphs

- Notations and Definitions.

- Given an edge $e=(u, v)$, the vertices u and v are the endpoints of e. We say e connects u and v. We say that u and v are incident to e.
- Two vertices $u, v \in V$ are adjacent or neighbors if and only if (u, v) is an edge.
- The incident edges on v is denoted using the set $\partial(v)$. So,

$$
\partial_{G}(v):=\{(u, v):(u, v) \in E\}
$$

We lose the subscript if the graph G is clear from context.

- Given a vertex v, the neighborhood of v is the set of neighbors of v. This is denoted sometimes as $N(v)$ or sometimes as $\Gamma(v)$. So,

$$
N_{G}(v):=|\{(u, v):(u, v) \in E\}|
$$

if the graph G is clear from context.

- The cardinality of $N_{G}(v)$ is called the degree of vertex v. We denote it using $\operatorname{deg}_{G}(v)$. This counts the number of neighbors of v. Note that,

$$
\operatorname{deg}_{G}(v)=\left|N_{G}(v)\right|=\left|\partial_{G}(v)\right|
$$

- A vertex v is isolated if its degree is 0 . That is, it has no edges connected to it.
- A graph $G=(V, E)$ is called regular if all degrees are equal, that is, $\operatorname{deg}_{G}(v)=$ $\operatorname{deg}_{G}(u)$ for all u and v.
- Given a graph $G=(V, E)$, we use $V(G)$ to denote V and $E(G)$ to denote E. This notation is useful when we are talking about multiple graphs.
- The Handshake Lemma. In any graph $G=(V, E)$,

$$
\sum_{v \in V(G)} \operatorname{deg}_{G}(v)=2|E(G)|
$$

- Perambulations in Graphs. Fix $G=(V, E)$
- A walk w in G is an alternating sequence of vertices and edges

$$
w=\left(v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, e_{k}, v_{k}\right)
$$

such that the ith edge $e_{i}=\left(v_{i-1}, v_{i}\right)$ for $1 \leq i \leq k$. Both edges and vertices can repeat.

- A trail t in G is a walk with no edges repeating.
- A path p in a graph G is a walk with no vertices repeated.
- A closed walk is a walk whose origin and destination are the same vertex.
- A circuit is a closed trail of length at least 1.
- A cycle is a circuit with no vertex other than the source and destination repeating.

- Connectivity, Forests, and Trees.

- u is reachable from v in G if there is a walk from u to v in G. A graph G is connected if any vertex is reachable from another vertex.
- Walk from u to v implies a path from u to v.
- A forest is a graph with no cycles.
- A tree is a forest which is connected.
- Trees have leaves.

- Tree Theorem.

Let $G=(V, E)$ be a graph. The following are equivalent statements.

1. G is a tree.
2. G has no cycles and adding any edge to G creates a cycle.
3. Between any two vertices in G there is a unique path.
4. G is connected, and deleting any edge from G disconnects the graph, and the resulting graph has exactly two connected components.
5. G is connected and $|E|=|V|-1$.
6. G has no cycles and $|E|=|V|-1$.

- Bipartite Graphs.

A graph $G=(V, E)$ is bipartite if the vertex set V can be partitioned into $V=L \cup R$ and $L \cap R=\varnothing$ such that every edge (x, y) has exactly one endpoint in L and the other endpoint in R.

$$
G \text { is bipartite } \Leftrightarrow G \text { has no cycles of } \boldsymbol{o d d} \text { length }
$$

- Matchings.

A matching $M \subseteq E$ is a subset of edges such that no two edges in M share an endpoint. In other words, a matching is a collection of pairwise disjoint set of edges.

- Matchings in Bipartite Graphs: Hall's Theorem.

Let $G=(L \cup R, E)$ be a bipartite graph. A matching M is an L-matching if every vertex of L is an endpoint of some edge in M.
G has an L-matching \Leftrightarrow For every subset $S \subseteq L,\left|N_{G}(S)\right| \geq|S|$

3 Numbers

－Modular Arithmetic：Definition．

－$a \bmod n$ is the unique integer $r \in\{0,1,2, \ldots, n-1\}$ such that a divided by n leaves remainder r ．
－The set $\{0,1, \ldots, n-1\}$ is called the ring of integers modulo n ，and is denoted as \mathbb{Z}_{n} often．
－Two integers are equivalent modulo n ，or $a \equiv_{n} b$ if and only if $a \bmod n=b \bmod n$ ．
－Algebra in Modular Arithmetic．Below，a, b, c are all integers，and n is a positive integer．
－$a \equiv_{n} b$ and $b \equiv_{n} c$ implies $a \equiv_{n} c$ ．
－$a \equiv_{n} b \quad \Rightarrow \quad(a+c) \equiv_{n}(b+c)$ ．
－$a \equiv_{n} b \quad \Rightarrow \quad a \cdot c \equiv_{n} b \cdot c$ ．
－$a \equiv_{n} b \quad \Rightarrow \quad a^{c} \equiv_{n} b^{c}$ if $c>0$ ．
But beware that the last two implications go only in one direction．That is，

$$
a \cdot c \equiv_{n} b \cdot c \text { doesn't necessarily imply } a \equiv_{n} b
$$

So you can＇t＂divide off＂c from both sides．To see this，note $2 \cdot 4 \equiv_{6} 5 \cdot 4 \equiv_{6} 2$ but $2 \neq{ }_{6} 5$ ．
Similarly，

$$
a^{c} \equiv_{n} b^{c} \text { doesn't necessarily imply } a \equiv_{n} b
$$

So you can＇t＂take $1 /$ cth power．To see this，note $5^{2} \equiv_{8} 3^{2} \equiv_{8} 1$ ，but $5 \not ⿻ 三 丨 ⿻ 三 丨 ⿻ コ 一 3$ ．
－Modular Exponentiation．A pretty fast way to compute $a^{b} \bmod n$ ．
－Greatest Common Divisor（GCD）．
$-\operatorname{gcd}(a, n)$ is the largest number dividing both a and n ．
－Euclid＇s recursive algorithm to find GCD of any two numbers．
－Bezout＇s Theorem： $\operatorname{gcd}(a, n)=g$ implies the existence of two integers x, y such that $x a+y n=g$ ．
－The above (x, y) can be found by Extended GCD algorithm．
－In fact，g is the smallest positive integer which can be written as $x a+y n$ ．

－Co－prime or Relatively prime numbers．

Two numbers a, n are co－prime or relatively prime if and only if $\operatorname{gcd}(a, n)=1$ ．Co－prime numbers have lots of nice properties．In particular，the following facts are useful（you should be able to prove all of them using Bezout＇s Theorem mentioned above）．
－If $\operatorname{gcd}(a, n)=1$ ，and $a b \equiv_{n} 0$ ，then $b \equiv_{n} 0$ ．As a consequence，we get

- If $\operatorname{gcd}(a, n)=1$, and $a \cdot b \equiv_{n} a \cdot c$, then $b \equiv_{n} c$.
- If a prime p divides a and p divides b, then p divides $a b$.
- If $\operatorname{gcd}(a, n)=1$ and $\operatorname{gcd}(b, n)=1$, then $\operatorname{gcd}(a b, n)=1$.

- The Multiplicative Inverse.

Co-prime numbers have inverses; a supremely helpful fact. For any two pair of coprime numbers a and n, the multiplicative inverse of a in the ring \mathbb{Z}_{n}, also called the multiplicative inverse of a modulo n, is the unique element b in \mathbb{Z}_{n} such that $a b \equiv_{n} 1$. We can use the Extended Euclid's GCD algorithm to compute the multiplicative inverses.

- Fermat's Little Theorem.

For any prime p and number a such that $\operatorname{gcd}(a, p)=1$, we have

$$
a^{p-1}=1 \bmod p, \quad \text { or, more concisely, } \quad a^{p-1} \equiv_{p} 1
$$

- Public Key Cryptography.

A conceptual breakthrough due to Diffie and Hellman from 1976 which allowed secrets to be shared without the need for keys to be shared. Diffie-Hellman win Turing Award in 2015.

- Alice wants to send a message m to Bob.
- Bob generates two keys: a public key pk which is told to all; a secret key sk which is only known to him.
- Bob also publishes two algorithms Enc and Dec.
- Alice uses $\operatorname{Enc}(m, p k)$ to get the encrypted cipher c.
- Bob uses $\operatorname{Dec}(c, s k, p k)$ to decrypt the cipher.
- Eve can't figure m out given Enc $(m, p k)$ and $p k$.

- RSA protocol.

A fantastic algorithm implementing public key cryptography. Invented by Rivest, Shamir, Adleman in 1978. Rivest-Shamir-Adleman awarded Turing award in 2002.

- Bob picks two large primes p, q. Let $N:=p q$ and $\phi:=(p-1)(q-1)$.
- Bob picks another number e such that $\operatorname{gcd}(e, \phi)=1$.
- Bob figures out $d \equiv e^{-1} \bmod \phi$, that is, d is the multiplicative inverse of e in \mathbb{Z}_{ϕ}.
- Bob's public key is (e, N). Bob's secret key is d.
- Encryption: Alice uses (e, N) to encrypt $m \mapsto m^{e} \bmod N$.
- Decryption: Bob uses (d, N) to decrypt cipher $c \mapsto c^{d} \bmod N$.

