What I know after taking CS 30

The document serves as a review of the second half of the course.

1 Probability

- Experiments and Outcomes: Sample Space Every time a probabilistic question is asked, figure out the *sample space*: that is, figure out what the unknown random experiment is, and what is the set of possible outcomes. Often represented by Ω .
- Events. Figure out the subset of outcomes you are interested in. This subset is the *event* you are interested in.
- The Probability Distribution. Finally, we need to figure out the function or the *probability* distribution $\mathbf{Pr}: \Omega \to [0,1]$ such that $\sum_{\omega \in \Omega} \mathbf{Pr}[\omega] = 1$. Given this distribution, we can answer what the chance/likelihood/probability of an event \mathcal{E} is: it is $\sum_{\omega \in \mathcal{E}} \mathbf{Pr}[\omega]$.

At some level, *modelling assumptions* dictate the distribution. Make as few and as natural assumptions.

- Tree Diagrams. For small problem, the tree diagram which starts with our state of the world and goes through all possibilities is a sure-shot way of figuring out the probabilities of all outcomes. It gets unwieldy soon, but very useful for intuition.
- Operations on Events.
 - Given an event \mathcal{E} , the negation event $\neg \mathcal{E}$ is used to denote the event that \mathcal{E} doesn't take place. That is, it is simply the subset $\neg \mathcal{E} = \Omega \setminus \mathcal{E}$. Sometimes, $\neg \mathcal{E}$ is denoted as $\overline{\mathcal{E}}$.

$$\mathbf{Pr}[\mathcal{E}] + \mathbf{Pr}[\neg \mathcal{E}] = 1$$

- Given two events \mathcal{E} and \mathcal{F} , the notation $\mathcal{E} \cup \mathcal{F}$ is precisely the union of the subsets in the sample space. $\mathbf{Pr}[\mathcal{E} \cup \mathcal{F}]$ captures the likelihood that at least one of the events takes place.
- Given two events \mathcal{E} and \mathcal{F} , the notation $\mathcal{E} \cap \mathcal{F}$ is precisely the intersection of the subsets in the sample space. $\Pr[\mathcal{E} \cap \mathcal{F}]$ captures the likelihood that both the events takes place.
- Two events \mathcal{E} and \mathcal{F} are *disjoint* or *exclusive* if $\mathcal{E} \cap \mathcal{F} = \emptyset$. That is, they both can't occur simultaneously. A collection of events $\mathcal{E}_1, \mathcal{E}_2, \dots, \mathcal{E}_k$ are *mutually exclusive* if $\mathcal{E}_i \cap \mathcal{E}_j = \emptyset$ for $i \neq j$.
- For mutually exclusive events,

$$\mathbf{Pr}[\mathcal{E}_1 \cup \mathcal{E}_2 \cup \cdots \mathcal{E}_k] = \sum_{i=1}^k \mathbf{Pr}[\mathcal{E}_i]$$

- The Inclusion-Exclusion formula (for two events, aka Baby version) tells us

$$\mathbf{Pr}[\mathcal{E} \cup \mathcal{F}] = \mathbf{Pr}[\mathcal{E}] + \mathbf{Pr}[\mathcal{F}] - \mathbf{Pr}[\mathcal{E} \cap \mathcal{F}]$$

• Conditional Probability. For any two events A and B, we have

$$\mathbf{Pr}[\mathcal{A} \mid \mathcal{B}] = \frac{\mathbf{Pr}[\mathcal{A} \cap \mathcal{B}]}{\mathbf{Pr}[\mathcal{B}]}$$

• Chain Rule. For any set of events A_1, A_2, \cdot, A_k ,

$$\mathbf{Pr}[\mathcal{A}_1 \cap \mathcal{A}_2 \cap \cdots \mathcal{A}_k] = \mathbf{Pr}[\mathcal{A}_1] \cdot \mathbf{Pr}[\mathcal{A}_2 \mid \mathcal{A}_1] \cdot \mathbf{Pr}[\mathcal{A}_3 \mid \mathcal{A}_1 \cap \mathcal{A}_2] \cdots \mathbf{Pr}[\mathcal{A}_k \mid \mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_{k-1}]$$

• The Law of Total Probability. For any two events A and B, we have

$$\mathbf{Pr}[\mathcal{A}] = \mathbf{Pr}[\mathcal{A} \mid \mathcal{B}] \cdot \mathbf{Pr}[\mathcal{B}] + \mathbf{Pr}[\mathcal{A} \mid \neg \mathcal{B}] \cdot \mathbf{Pr}[\neg \mathcal{B}] +$$

More generally, if $\mathcal{B}_1, \mathcal{B}_2, \dots, \mathcal{B}_k$ are k mutually exclusive events which are exhaustive, that is, $\sum_{i=1}^k \mathbf{Pr}[\mathcal{B}_i] = 1$, then

$$\mathbf{Pr}[\mathcal{A}] = \sum_{i=1}^{k} \mathbf{Pr}[\mathcal{A} \mid \mathcal{B}_i] \cdot \mathbf{Pr}[\mathcal{B}_i]$$

- Independence. Two events \mathcal{A} and \mathcal{B} are independent if $\Pr[\mathcal{A} \cap \mathcal{B}] = \Pr[\mathcal{A}] \cdot \Pr[\mathcal{B}]$. Be careful when figuring out when two events are independent.
- Random Variables. A random variable is a function/mapping X : Ω → Range from the set
 of outcomes to a range. Usually the range is the set of natural numbers, but it could be reals,
 integers, etc.
- Expectation of a Random Variable. The expectation of a random variable is an "weighted average" defined as

$$\mathbf{Exp}[X] \coloneqq \sum_{\omega \in \Omega} X(\omega) \cdot \mathbf{Pr}[\omega]$$

• Linearity of Expectation. For any k random variables X_1, X_2, \dots, X_k , we have

$$\mathbf{Exp}\left[\sum_{i=1}^{k} X_i\right] = \sum_{i=1}^{k} \mathbf{Exp}\left[X_i\right]$$

One cannot overstate the importance of this above fact.

• Independent Random Variables. Two random variables X and Y are independent if for any x,y in their ranges

$$\mathbf{Pr}[X = x, Y = y] = \mathbf{Pr}[X = x] \cdot \mathbf{Pr}[Y = y]$$

k random variables X_1, X_2, \dots, X_k are pairwise independent if any two of them are independent. They are mutually independent if for any x_1, x_2, \dots, x_k , we have

$$\mathbf{Pr}[X_1 = x_1, X_2 = x_2, \dots, X_k = x_k] = \prod_{i=1}^k \mathbf{Pr}[X_i = x_i]$$

• Expectation of Product of Mutually Independent Random Variables. If X_1, \dots, X_k are mutually independent random variables, then

$$\mathbf{Exp}[\prod_{i=1}^{k} X_i] = \prod_{i=1}^{k} \mathbf{Exp}[X_i]$$

• Variance of a Random Variable. Given a random variable X, the variance Var[X] is defined as

$$\mathbf{Var}[X] \coloneqq \mathbf{Exp}[(X - \mathbf{Exp}[X])^2] = \mathbf{Exp}[X^2] - (\mathbf{Exp}[X])^2$$

The standard deviation is defined as

$$\sigma(X) \coloneqq \sqrt{\mathbf{Var}[X]}$$

• Linearity of Variance for Pairwise Independent Random Variables. Given k pairwise independent random variables X_1, \ldots, X_k , we have

$$\mathbf{Var}\left[\sum_{i=1}^{k} X_i\right] = \sum_{i=1}^{k} \mathbf{Var}\left[X_i\right]$$

• Concentration around the mean: Chebyshev's Inequality For any random variable X and for any t > 0, we have

$$\mathbf{Pr} \big[\ |X - \mathbf{Exp}[X]| \ \geq \ t \big] \ \leq \ \frac{\mathbf{Var}[X]}{t^2}$$

As a corollary we get that the probability X is **not** in the range $\left[\mathbf{Exp}[X] - c\sigma(X), \mathbf{Exp}[X] + c\sigma(X) \right]$ is at most $\frac{1}{c^2}$.

2 Graphs

- Notations and Definitions.
 - Given an edge e = (u, v), the vertices u and v are the **endpoints** of e. We say e **connects** u and v. We say that u and v are **incident** to e.
 - Two vertices $u, v \in V$ are adjacent or neighbors if and only if (u, v) is an edge.
 - The incident edges on v is denoted using the set $\partial(v)$. So,

$$\partial_G(v) := \{(u, v) : (u, v) \in E\}$$

We lose the subscript if the graph G is clear from context.

- Given a vertex v, the **neighborhood** of v is the set of neighbors of v. This is denoted sometimes as N(v) or sometimes as $\Gamma(v)$. So,

$$N_G(v) := |\{(u, v) : (u, v) \in E\}|$$

if the graph G is clear from context.

- The cardinality of $N_G(v)$ is called the **degree** of vertex v. We denote it using $\deg_G(v)$. This counts the number of neighbors of v. Note that,

$$\deg_G(v) = |N_G(v)| = |\partial_G(v)|$$

- A vertex v is **isolated** if its degree is 0. That is, it has no edges connected to it.
- A graph G = (V, E) is called **regular** if all degrees are equal, that is, $\deg_G(v) = \deg_G(u)$ for all u and v.
- Given a graph G = (V, E), we use V(G) to denote V and E(G) to denote E. This notation is useful when we are talking about multiple graphs.
- The Handshake Lemma. In any graph G = (V, E),

$$\sum_{v \in V(G)} \deg_G(v) = 2|E(G)|$$

- Perambulations in Graphs. Fix G = (V, E)
 - A walk w in G is an alternating sequence of vertices and edges

$$w = (v_0, e_1, v_1, e_2, v_2, \dots, e_k, v_k)$$

such that the ith edge $e_i = (v_{i-1}, v_i)$ for $1 \le i \le k$. Both edges and vertices can repeat.

- A trail t in G is a walk with no edges repeating.
- A path p in a graph G is a walk with no vertices repeated.
- A closed walk is a walk whose origin and destination are the same vertex.

- A circuit is a closed trail of length at least 1.
- A cycle is a circuit with no vertex other than the source and destination repeating.

• Connectivity, Forests, and Trees.

- u is **reachable** from v in G if there is a walk from u to v in G. A graph G is **connected** if any vertex is reachable from another vertex.
- Walk from u to v implies a path from u to v.
- A *forest* is a graph with no cycles.
- A *tree* is a forest which is connected.
- Trees have leaves.

• Tree Theorem.

Let G = (V, E) be a graph. The following are equivalent statements.

- 1. G is a tree.
- 2. *G* has no cycles and adding any edge to *G* creates a cycle.
- 3. Between any two vertices in G there is a unique path.
- 4. *G* is connected, and deleting any edge from *G* disconnects the graph, and the resulting graph has exactly two connected components.
- 5. G is connected and |E| = |V| 1.
- 6. *G* has no cycles and |E| = |V| 1.

• Bipartite Graphs.

A graph G = (V, E) is **bipartite** if the vertex set V can be partitioned into $V = L \cup R$ and $L \cap R = \emptyset$ such that *every* edge (x, y) has exactly one endpoint in L and the other endpoint in R.

G is bipartite \Leftrightarrow G has no cycles of **odd** length

• Matchings.

A *matching* $M \subseteq E$ is a subset of edges such that no two edges in M share an endpoint. In other words, a matching is a collection of *pairwise disjoint* set of edges.

• Matchings in Bipartite Graphs: Hall's Theorem.

Let $G = (L \cup R, E)$ be a bipartite graph. A matching M is an L-matching if every vertex of L is an endpoint of some edge in M.

G has an L-matching \Leftrightarrow For every subset $S \subseteq L$, $|N_G(S)| \ge |S|$

3 Numbers

- Modular Arithmetic: Definition.
 - $a \mod n$ is the *unique* integer $r \in \{0, 1, 2, \dots, n-1\}$ such that a divided by n leaves remainder r.
 - The set $\{0, 1, \dots, n-1\}$ is called the *ring of integers modulo* n, and is denoted as \mathbb{Z}_n often.
 - Two integers are equivalent modulo n, or $a \equiv_n b$ if and only if $a \mod n = b \mod n$.
- Algebra in Modular Arithmetic. Below, a, b, c are all integers, and n is a positive integer.
 - $a \equiv_n b$ and $b \equiv_n c$ implies $a \equiv_n c$.
 - $-a \equiv_n b \implies (a+c) \equiv_n (b+c).$
 - $-a \equiv_n b \implies a \cdot c \equiv_n b \cdot c.$
 - $-a \equiv_n b \implies a^c \equiv_n b^c \text{ if } c > 0.$

But beware that the last two implications go only in one direction. That is,

$$a \cdot c \equiv_n b \cdot c$$
 doesn't necessarily imply $a \equiv_n b$

So you can't "divide off" c from both sides. To see this, note $2 \cdot 4 \equiv_6 5 \cdot 4 \equiv_6 2$ but $2 \not\equiv_6 5$. Similarly,

$$a^c \equiv_n b^c$$
 doesn't necessarily imply $a \equiv_n b$

So you can't "take 1/cth power. To see this, note $5^2 \equiv_8 3^2 \equiv_8 1$, but $5 \not\equiv_8 3$.

- Modular Exponentiation. A pretty fast way to compute $a^b \mod n$.
- Greatest Common Divisor (GCD).
 - gcd(a, n) is the largest number dividing both a and n.
 - Euclid's recursive algorithm to find GCD of any two numbers.
 - **Bezout's Theorem:** gcd(a, n) = g implies the existence of two integers x, y such that xa + yn = g.
 - The above (x, y) can be found by Extended GCD algorithm.
 - In fact, q is the smallest positive integer which can be written as xa + yn.

• Co-prime or Relatively prime numbers.

Two numbers a, n are co-prime or relatively prime if and only if gcd(a, n) = 1. Co-prime numbers have lots of nice properties. In particular, the following facts are useful (you should be able to prove all of them using Bezout's Theorem mentioned above).

- If
$$gcd(a, n) = 1$$
, and $ab \equiv_n 0$, then $b \equiv_n 0$. As a consequence, we get

- If gcd(a, n) = 1, and $a \cdot b \equiv_n a \cdot c$, then $b \equiv_n c$.
- If a prime p divides a and p divides b, then p divides ab.
- If gcd(a, n) = 1 and gcd(b, n) = 1, then gcd(ab, n) = 1.

• The Multiplicative Inverse.

Co-prime numbers have *inverses*; a supremely helpful fact. For any two pair of coprime numbers a and n, the *multiplicative inverse* of a in the ring \mathbb{Z}_n , also called the multiplicative inverse of a modulo n, is the *unique* element b in \mathbb{Z}_n such that $ab \equiv_n 1$. We can use the Extended Euclid's GCD algorithm to compute the multiplicative inverses.

• Fermat's Little Theorem.

For any prime p and number a such that gcd(a, p) = 1, we have

$$a^{p-1} = 1 \mod p$$
, or, more concisely, $a^{p-1} \equiv_p 1$

• Public Key Cryptography.

A conceptual breakthrough due to Diffie and Hellman from 1976 which allowed secrets to be shared without the need for keys to be shared. Diffie-Hellman win Turing Award in 2015.

- Alice wants to send a message m to Bob.
- Bob generates **two** keys: a **public** key pk which is told to all; a **secret** key sk which is only known to him.
- Bob also publishes two algorithms Enc and Dec.
- Alice uses Enc(m, pk) to get the encrypted cipher c.
- Bob uses Dec(c, sk, pk) to decrypt the cipher.
- Eve can't figure m out given Enc(m, pk) and pk.

• RSA protocol.

A fantastic algorithm implementing public key cryptography. Invented by Rivest, Shamir, Adleman in 1978. Rivest-Shamir-Adleman awarded Turing award in 2002.

- Bob picks two large primes p, q. Let N := pq and $\phi := (p-1)(q-1)$.
- Bob picks another number e such that $gcd(e, \phi) = 1$.
- **–** Bob figures out $d \equiv e^{-1} \mod \phi$, that is, d is the multiplicative inverse of e in \mathbb{Z}_{ϕ} .
- Bob's public key is (e, N). Bob's secret key is d.
- Encryption: Alice uses (e, N) to encrypt $m \mapsto m^e \mod N$.
- Decryption: Bob uses (d, N) to decrypt cipher $c \mapsto c^d \mod N$.