CS30（Discrete Math in CS），Summer 2021 ：Lecture 29

Topic：Numbers：Fermat＇s Little Theorem

Disclaimer：These notes have not gone through scrutiny and in all probability contain errors．
Please discuss in Piazzalemail errors to deeparnab＠dartmouth．edu

1．Fermat＇s Little Theorem．

We will prove the following theorem remarkable in its own right．Later，we will see how it will lead to an algorithm for public key cryptography．

Theorem 1．Let p be any prime．For any $a \in \mathbb{Z}_{p} \backslash\{0\}, a^{p-1} \equiv_{p} 1$ ．

Remark：Note that the above theorem is for $a \in \mathbb{Z}_{p} \backslash\{0\}$ ．For any（larger）a with $\operatorname{gcd}(a, p)$ ，we get $a^{p-1} \equiv_{p}(a \bmod p)^{p-1} \equiv_{p} 1$ ．

Remark：The above allows us to do must＂faster＂modular exponentiation（at least by hand） when the modulus is prime．For instance，instantiating the above theorem for $a=3$ and $p=7$ ， we get $3^{6} \equiv_{7} 1$ ．But we also get $3^{60} \equiv_{7} 1$ by taking the above to power 10 on both sides（note $1^{10}=1$ ）．And we also get $3^{61} \equiv_{7} 3 \cdot 3^{60} \equiv_{7} 3$ ．

Proof．The crux of the proof lies in the＂dividing out＂theorem we did last class．Recall，since every $a \in \mathbb{Z}_{p} \backslash\{0\}$ has $\operatorname{gcd}(a, p)=1$ ，we know that

$$
\begin{equation*}
a x \equiv_{p} a y \Rightarrow x \equiv_{p} y \tag{1}
\end{equation*}
$$

In particular，if we take two different $x, y \in \mathbb{Z}_{p} \backslash\{0\}$ ，then $a x \not ⿻ 三 丨 p_{p} a y$ ，that is，$a x \bmod p \neq a y \bmod p$ ．
Remark：In other words，if one considers the function $h_{a}: \mathbb{Z}_{p} \backslash\{0\} \rightarrow \mathbb{Z}_{p} \backslash\{0\}$ defined as $h_{a}(x)=a x \bmod p$ ，then h_{a} is an injective function．

Furthermore，if we look at the numbers of the form $a x \bmod p$ as x ranges in $\mathbb{Z}_{p} \backslash\{0\}$ ，then we must see all the numbers in $\mathbb{Z}_{p} \backslash\{0\}$ ．Indeed，for any $y \in \mathbb{Z}_{p}$ ，we know that $a x \equiv_{p} y$ has the solution $x \equiv_{p} a^{-1} y$ in $\mathbb{Z}_{p} \backslash\{0\}$ ．

Remark：That is，the function h_{a} defined above is a surjective function．Together with the fact that it is injective，we get it is bijective．That is，h_{a} is just a scrambler of the numbers in $\mathbb{Z}_{p} \backslash\{0\}$ ．

Therefore，we get that the following two sets：

$$
A=\mathbb{Z}_{p} \backslash\{0\}=\{1,2, \ldots, p-1\} \quad \text { and } \quad B=\{a x \bmod p: x \in A\}
$$

are the same．

	$a x \bmod p$	
Example．Let us just illustrate with $p=7$ and $a=3$.	2	1
	3	2
4	5	
	5	1

Now，since A and B are the same set，we get

$$
\prod_{z \in A} z=\prod_{z \in B} z=\prod_{x \in A} h_{a}(x)=\prod_{x \in A}(a x \bmod p)
$$

Taking both sides modulo p ，we get

$$
\left(\prod_{z \in A} z\right) \equiv \equiv_{p} \quad\left(\prod_{x \in A}(a x)\right) \equiv \equiv_{p} \quad\left(a^{p-1} \cdot \prod_{x \in A} x\right)
$$

Let us use the notation $Q:=\left(\prod_{z \in A} z\right)$（note $\left.Q=(p-1)!\right)$ ．Then，we get

$$
\begin{equation*}
Q \equiv_{p} a^{p-1} Q \tag{2}
\end{equation*}
$$

Finally，we assert that $\operatorname{gcd}(p, Q)=\operatorname{gcd}(p,(p-1)!)=1$ ．This is problem 1（c）in PSet 8．And now，we can again apply（1）on（2）to get $a^{p-1} \equiv_{p} 1$（cancel Q from both sides）．

Exercise：Check if the above would be true if p were not a prime but the only restriction was $\operatorname{gcd}(a, n)=1$ ．In particular，find a, n such that $\operatorname{gcd}(a, n)=1$ but $a^{n-1} ⿻ 三 丨_{n} 1$ ．

Remark：After doing the above exercise you should ask yourself：where all is the property that p is prime used？If you think about it clearly enough，you will indeed prove that if $\operatorname{gcd}(a, n)=1$ ， then there is indeed some number ϕ such that $a^{\phi} \equiv_{n} 1$ ．A problem in the UGP explores this．

