CS30 (Discrete Math in CS), Summer 2021 : Lecture 25 Supp
Topic: Graphs: Proof of Hall’s Theorem

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.
Please discuss in Piazza/email errors to deeparnab @ dartmouth.edu

* Recap.

A graph G = (V, E) is bipartite if there is partition of V' = L U R such that L n R = & and for every
edge e = (u,v) € R, we have [{u,v} n L| = [{u,v} n R| = 1. That is, every edge has exactly one
endpoint in L and exactly one endpoint in R.

A matching M in a graph is a subset of edges M ¢ F such that for any e, ¢’ € M, ene’ = @. That is,
M is a collection of edges which do not share end points. A vertex v € V participates in the matching
M if there is an edge in M which is incident to v. In a bipartite graph G = (L U R, E'), a matching
M c E'is an L-matching if all vertices in L participate in M.

 Hall’s Theorem Given any subset S ¢ L, we Ng(S) are the set of vertices in R which neighbors of
some vertex in S. Hall’s Theorem says the following.

Theorem 1. Let G = (V, E) be a bipartite graph with V' = L U R. Then, G has an L-matching if
and only if
For every subset S ¢ L, [Ng(S)| > |S| (Hall’s Condition)

Proof. Again, one direction is easy. That is, if G = (L U R, F') has an L-matching, then we must
have (Hall’s Condition). Why? Suppose there exists an L-matching called M. Then for any S € L,
consider the set 7' = {v € R: Ju € S : (u,v) € M}. Thatis, look at all the partners in M, of vertices in
S. Clearly, T' ¢ Ng(S), and thus, |Ng(S)| > |T|. And |T| = |S| since every vertex in S has a partner
in M (M is an L-matching). So, |Ng(S)| > |S].

The interesting direction is the converse. Given that (Hall’s Condition) holds, we need to prove that

G = (LU R, F) has an L-matching. We will prove by induction on vertices. This proof is deep, in
that it has layers. So hold tight!

Let P(n) be the predicate which is true if any bipartite graphs G = (LU R, E) with |L| =n
satisfying (Hall’s Condition) has an L-matching.

We need to show Vn € N : P(n) is true; we proceed to prove this by induction.

Base Case: Is P(1) true? Fix any graph G = (LUR, F') with|L| = 1. Let L = {v}. (Hall’s Condition)
implies, deg(v) > 1. So, there is some edge (v, w) incident on v. M = {(v,w)} is an L-matching.
So, P(1) is true.

Inductive Case: Fix a natural number k. We assume P(1), P(2),..., P(k) are all true. We wish to
prove P(k+1). To that end, we fix a bipartite graph G = (LU R, E') which satisfies (Hall’s Condition)
and |L| =k + 1.

Let u € L be an arbitrary vertex. (Hall’s Condition) implies deg(u) > 1, thus there is at least one edge
(u,v) € E. Pick one such edge arbitrarily. Consider the graph G’ = G — {u,v}. That is, we delete



G=(LUR,E) G'=(UUR,F)

Figure 1: Deleting the vertices v and v.

both vertices u and v (and not just the edge (u, v)). G’ is also a bipartite graph, with G = (L'UR’, E")
where L' = L—-u, R'=R-vand E' = E~ (Ng(u) U Ng(v)). See Figure 1 for an illustration.

We now fork into two cases.

Case 1: G' satisfies (Hall’s Condition). This is the easy case. Since |L'| = |[L| -1 = k, and since
by the induction hypothesis, P (k) is true, we get that G’ has an L’-matching; let’s call it M’. Then,
M := M'" U (u,v) is the required L-matching in G. So in this case, we have proven P(k + 1).

Case 2: G' doesn’t satisfy (Hall’s Condition). What does this mean? It means there is some subset
S ¢ L', such that |[Ng/(S)| < |S|. On the other hand, since G did satisfy (Hall’s Condition), we have
|NG(S)| > |S|. Finally, note that the only way N¢»(.S) and N¢(S) can be different is that if Ng(.S)
has the vertex v in it. And in that case, Ng/(S) = Ng(S) \ v. See Figure 2 for an illustration.

Therefore, we have v € Ng(S) and furthermore, [Ng(S)| = |S|; if [Ng(S)| > |S|, then indeed,
|NG(S)| > |S|+ 1 because the LHS is an integer, which in turn implies [N/ (S)| = [Ng(S)|-1 > |S].

Ng/(S) Ng(S)

G =(lUR,F) G=(LUR,E)

Figure 2: How to related N/ (S) and Ng(S).



Now, we consider two different graphs. We consider G; = G[S U Ng(S)] and Gy = G[(L~ S) U
(R~ Ng(S))]. Recall, the notion of induced subgraphs. See Figure 3 for an illustration.

Ng(S) N¢(S) L-S R - Ng(S)

G=(LUR,E) G, G,

Figure 3: Breaking into two graphs.
Claim 1. Both G; and G satisfy (Hall’s Condition).

Proof. Let’s first prove for G1. Any subset 7' ¢ S has Ng(T') € Ng(S). Thus, Ng, (T') = No(T)
as well. Since G satisfied (Hall’s Condition), we get [N, (T)| = |[Ng(T)| > |T|. Thus, G; satisfies
(Hall’s Condition).

Moving on to G'o. Fix asubset 7' ¢ L \ S. What is N¢, (7")? Here is an useful observation:
N, (T) = Na(T)~ Na(S) = Na(SuT) N Na(S)

The first equality follows since the neighbors of 7" in (G5 are precisely the neighbors of T" in G’ which
are not the neighbors of S in G. The second equality is the clever part; it is noting that even if we
look at neighbors of S U T in G and remove the neighbors of S, we still get the neighbors of T" in G
which are not in N;(.S). Why is this useful? Because, N;(.S) € Ng(S uT). Thus, we know that
INa(SUT)~ Na(S)| = [Na(SuT)|-|Ng(S)l.

Putting all together, we get
[Neo(T)| = [Na(SuT)| - |Na(S)| 2 [SuT|-|S| = |T|

where the inequality follows since |Ng(S uT)| > |S uT| by (Hall’s Condition) and since |N¢(S)| =
|S|, and the second equality follows since SN7T = @. O



Since both G and G+ satisfy (Hall’s Condition), and since both |S| and |L \ S| are < |L|, by the
induction hypothesis, we get that G; has an S-matching called M; and G5 has an L \ S-matching
called Ms. Thus, My u M is the L-matching in G.

|
‘.i - L-S R - Ng(S) ‘

G, G, G=(LUR,E)

Done! O



