CS30 (Discrete Math in CS), Summer 2021 : Lecture 26

Topic: Numbers: Modular Arithmetic

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.
Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

- Definition. Given any integer $n>0$ and another integer a (not necessarily positive), the division theorem ${ }^{1}$ states that there are unique integers q, r such that $a=q n+r$ with $0 \leq r<n$. The number r is denoted as $a \bmod n$.
- Examples. For example, $17 \bmod 3$ is 2 . This is because $17=3 \times 5+2$. Similarly, $13 \bmod 5=3$.

Slightly more interestingly, $(-1) \bmod 3=2$. This is because $-1=3 \times(-1)+2$. Similarly, $(-7) \bmod$ $5=3$ since $-7=5 \times(-2)+3$.

- The Ring of Integers modulo n.

Fix a positive natural number n. The way to think about the $\bmod n$ operation is as a function which takes integers to the set $\{0,1,2, \ldots, n-1\}$ of possible remainders. There is a name for this set of n remainders; it is called the ring of integers modulo n and is denoted by \mathbb{Z}_{n}.

$$
\bmod n: \mathbb{Z} \rightarrow \mathbb{Z}_{n} \quad a \mapsto a \bmod n
$$

Why ring? Well just consider how the numbers map. 0 maps to 0,1 maps to 1 , and so on til ($n-1$) maps to $(n-1)$. But then n maps to 0 , it "rings" around to 0 , and the process starts again. $(n+1)$ maps to 1 and so on. It also rings the same way for negative numbers. 1 maps to 1,0 maps to $0,-1$ maps to $n-1,-2$ maps to $n-2$, and so on.

- An Important Notation.

The function $\bmod n$ is clearly not injective. Indeed, any two numbers which map to the same element are called equivalent modulo n.
Given two integers a, b, we use the notation

$$
a \equiv_{n} b
$$

to denote the condition that $a \bmod n=b \bmod n$.

- Important Properties. The following simple but important properties are crucial to be comfortable with this new "kind" of math. I would recommend trying to actually prove the facts by yourself and then peeking at the solution.

1. (Equivalence under addition of multiple of n.) For any natural number n and integers a and b, $a \equiv_{n}(a+b n)$.
Suppose $a \bmod n=r$, that is, $a=q n+r$. Then, $a+b n=q n+r+b n=(q+b) n+r$. Thus, $(a+b n) \bmod n=r$ as well.

[^0]2. (Transitivity) If $a \equiv_{n} b$ and $c \equiv_{n} b$, then $a \equiv_{n} c$.
$a \equiv_{n} b$ implies there is some remainder $0 \leq r<n$ and quotients $q_{1}, q_{2} \in \mathbb{Z}$ such that $a=q_{1} n+r$ and $b=q_{2} n+r . c \equiv_{n} b$ implies there is some q_{3} such that $c=q_{3} n+r$. Thus, $a \bmod n=r=$ $c \bmod n$ implying $a \equiv_{n} c$.
3. (Addition OK) Show that if $a \equiv_{n} b$ and $c \equiv_{n} d$, then $(a+c) \equiv_{n}(b+d)$.
$a \equiv_{n} b$ means there is some remainder $0 \leq r<n$ and quotients $q_{1}, q_{2} \in \mathbb{Z}$ such that $a=q_{1} n+r$ and $b=q_{2} n+r$.
Similarly, there is some remainder $0 \leq s<n$ and quotients $p_{1}, p_{2} \in \mathbb{Z}$ such that $c=p_{1} n+s$ and $d=p_{2} n+s$.
Thus, $(a+c)=\left(q_{1}+p_{1}\right) n+(r+s)$ implying $(a+c) \equiv_{n}(r+s)$ by equivalence under adding a multiple of n. Similarly, $(b+d)=\left(q_{2}+p_{2}\right) n+(r+s)$ implying $(b+d) \equiv_{n}(r+s)$. Transitivity implies $(a+c) \equiv_{n}(b+d)$.
4. (Multiplication OK) Show that if $a \equiv_{n} b$ and $c \equiv_{n} d$, then $(a \cdot c) \equiv_{n}(b \cdot d)$.
$a \equiv_{n} b$ means there is some remainder $0 \leq r<n$ and quotients $q_{1}, q_{2} \in \mathbb{Z}$ such that $a=q_{1} n+r$ and $b=q_{2} n+r$.
Similarly, there is some remainder $0 \leq s<n$ and quotients $p_{1}, p_{2} \in \mathbb{Z}$ such that $c=p_{1} n+s$ and $d=p_{2} n+s$.
Thus,
$$
(a \cdot c)=\left(q_{1} n+r\right) \cdot\left(p_{1} n+s\right)=\left(q_{1} p_{1} n^{2}+q_{1} n s+p_{1} n r+r s\right)=\left(q_{1} p_{1} n+q_{1} s+p_{1} r\right) n+r s
$$
and,
$$
(b \cdot d)=\left(q_{2} n+r\right) \cdot\left(p_{2} n+s\right)=\left(q_{2} p_{2} n^{2}+q_{2} n s+p_{2} n r+r s\right)=\left(q_{2} p_{2} n+q_{2} s+p_{2} r\right) n+r s
$$

Therefore, $(a \cdot c) \equiv_{n}(r \cdot s)$ by equivalence under adding a multiple of n, and so is $(b \cdot d) \equiv_{n}(r \cdot s)$. Transitivity implies $(a \cdot c) \equiv_{n}(b \cdot d)$.
5. (Powering with a positive integer OK) Let k be a positive natural number. If $a \equiv_{n} b$, then $a^{k} \equiv_{n} b^{k}$.
Apply the above k times. More precisely, $a \equiv_{n} b$ and $a \equiv_{n} b$ implies $(a \cdot a) \equiv_{n}(b \cdot b)$, that is $a^{2} \equiv_{n} b^{2}$. One proceeds inductively. If we already have shown $a^{k-1} \equiv_{n} b^{k-1}$, then along with the fact $a \equiv_{n} b$, we get $\left(a^{k-1} \cdot a\right) \equiv_{n}\left(b^{k-1} \cdot b\right)$, that is, $a^{k} \equiv_{n} b^{k}$.
6. (Division usually not OK) Show an example of numbers a, b, c, n where $(a \cdot b) \equiv_{n}(c \cdot b)$ but $a \neq{ }_{n} c$.
Let me show how I would come up with such an example before telling you the example. If $(a b) \equiv_{n}(c b)$, we know that $(a b-c b) \equiv_{n} 0$, that is $(a-c) \cdot b \equiv_{n} 0$, or n divides $(a-c) b$. And we want an example where $a \not{ }_{n} c$ that is n doesn't divide $(a-c)$.
Well, if n divides $(a-c) b$ but not $(a-c)$, one simple example would be when $n=b$ and say $a-c=1$. This leads us to the example $n=5, b=5, a=2, c=1$. One can check $-(2 \cdot 5) \equiv_{5}(1 \cdot 5)$ but $2 \neq 51$.
One may then think - hey, if $b<n$ would this be true. Even in this case, the answer is NO. To see this, again, we want n to divide $(a-c) b$ but n should not divide $(a-c)$. So b could be a factor of n, and n / b is what divides $(a-c)$ (but not n).

For instance, $n=6=2 \cdot 3, b=3, a=7$ and $c=5$ suffices. Let's check, Is $21 \equiv_{6} 15$? Yes, both give remainder 3 when divided by 6 . Is $7 \equiv_{6} 5$? No, $7 \bmod 6=1$ which $5 \bmod 6=5$.
Later on, we will see one case when division will be OK. You can perhaps guess (yes, when b and n are relatively prime).
7. (Taking "roots" not OK) Show an example of numbers a, b, n and k, such that $a^{k} \equiv_{n} b^{k}$, but $a \not{ }_{n} b$. In fact, show different examples for $k=2$ and $k=3$.
Once again, the method is more important than the specific example.
Let's start with $k=2$. $a^{2} \equiv_{n} b^{2}$ means $a^{2}-b^{2} \equiv_{n} 0$. That is, $(a-b)(a+b) \equiv_{n} 0$. So, if n divides the product of $(a-b)$ and $(a+b)$. We also want $a \equiv_{n} b$, that is, we want $(a-b) \neq{ }_{n} 0$. We want n not to divide $(a-b)$.
Well, if n divides $(a-b)(a+b)$ but not $(a-b)$, one simple example would be when $n=a+b$ and say $a-b=1$. This leads us to the example $n=5, a=3, b=2$.
Let's check: $3^{2} \equiv_{5} 2^{2}$ — yes, 9 divided by 5 is 4 which is 2^{2}. Is $3 \equiv_{5} 2$? Of course not. There's our counterexample. Do you want to do the $k=3$ case on your own? Here's a hint: $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$.

- Modular Exponentiation Algorithm

Suppose we want to figure out what is the remainder when we divide 3^{10} by 7 , that is, what is $3^{10}(\bmod 7)$? The hard and often infeasible way would be to compute 3^{10} and then divide by 7 to get the remainder. The above operations allow a much faster way to compute this. Let's first do an example and then give the whole algorithm.

$$
\begin{array}{rlrl}
3^{10} \bmod 7 & =\left(3^{2}\right)^{5} \bmod 7 & & \\
& =9^{5} \bmod 7 & & \text { Operation }(\mathrm{c}) \text { above } \\
& =(9 \bmod 7)^{5} \bmod 7 & & \text { Progress! From } 3^{10} \text { we have moved to } 2^{5} . \\
& =2^{5} \bmod 7 & & \text { Can't halve } 5 \text { as it is odd. } \\
& =\left(2 \cdot 2^{4}\right) \bmod 7 & & \\
& =\left((2 \bmod 7) \cdot\left(2^{4} \bmod 7\right)\right) \bmod 7 & \text { We have again halved the exponent by moving to } 2^{2}=4 . \\
& =\left(2 \cdot\left(4^{2} \bmod 7\right)\right) \bmod 7 & &
\end{array}
$$

We get 4 when we divide 3^{10} by 7 . The general idea was to keep on reducing the exponent by half by moving to the square, and then replacing the square to a possibly smaller number by taking the mod "inside". The full recursive algorithm is shown below.

```
procedure \(\operatorname{ModExp}(a, b, n) \triangleright\) Assumes \(b, n\) are positive integers.
    \(\triangleright\) Returns \(a^{b} \bmod n\).
    \(a \leftarrow a \bmod n \triangleright\) We first move \(a\) to \(a \bmod n\). Always get inside the ring.
    if \(b=1\) then:
        return \(a \bmod n\). \(\triangleright\) Nothing to do - base case.
    if \(b\) is even then:
        return \(\operatorname{ModExp}\left(a^{2}, \frac{b}{2}, n\right)\)
    else
        \(s=\operatorname{ModExP}(a,(b-1), n) \triangleright b-1\) is even.
        \(\triangleright s=a^{b-1} \bmod n\).
        return \((a \cdot s) \bmod n\).
```

Remark: The first line ensures $a \in\{0,1, \ldots, n-1\}$. Note that we compute the mod of (a. $s) \bmod n$. The number $a \cdot s$ is at most n^{2}. Thus, to compute $a^{b} \bmod n$ one only needs to be "divide" numbers as big as n^{2} by n. Thus n is a one or small two-digit number, this all can be done by hand.

Exercise: Implement the algorithm up in your favorite language.

[^0]: ${ }^{1}$ The division theorem may sound "obvious" to you, for this is probably something you have seen from grade school, but it requires a proof. Why should there be a quotient-remainder pair? And why unique? A UGP from the past explored this.

