CS30 (Discrete Math in CS), Summer 2021

Drill 21+22

Topic: Graphs

Instructions

- Please submit all homework electronically in PDF, ideally typeset using LaTeX. If your handwriting is not legible, you may get 0 points.
- The drills below are supposed to be quick to do and quick to check. If a grader cannot read and understand your solution to a given drill exercise in $\mathbf{1}$ minute, you may get a 0 .
- Collaboration Policy: You should be able to and indeed should do the drills on your own. Collaboration is not allowed. You can ask clarification questions on Ed Discussion privately; the instruction team may choose to make it public. You can refer to the recommended textbook, your own course notes, posted videos, and the posted lecture notes. Not the web. When in doubt, consult the instructor.

Exercise 1. (2 points)

Let $G=(V, E)$ be a graph, and u, v, w be some three vertices of G. True or False:
If there is a path from u to v in G, and a path from v to w in G, then there is a path from u to w in G which contains v.

If you answer true, give a very short reason. If you answer false, draw a counterexample.

Exercise 2. (5 points)

- Draw all possible trees on 3 vertices $\{a, b, c\}$. (1 point)
- Draw all possible trees on 4 vertices $\{a, b, c, d\}$. (2 points)
- Prove that the number of trees on n vertices must be $\geq \frac{n!}{2}$. (2 points)

Hint: look at the trees you have drawn in the two parts above.
Not for points, but for your wondering: how many trees do you think are there on n vertices? You can write your thoughts down if you want to.

