
CS30 (Discrete Math in CS), Summer 2021 : Lecture 17
Topic: Probability: Expectation

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.
Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

• Linearity of Expectation. This is one of the most powerful equations in all of probability. Literally.
It states the following. It literally has a four line proof.

Theorem 1. For any two random variables X and Y , let Z ∶=X + Y . Then,

Exp[Z] = Exp[X] +Exp[Y ]

Proof.

Exp[Z] = ∑
ω∈Ω

Z(ω)Pr[ω] Definition of Expectation

= ∑
ω∈Ω

(X(ω) + Y (ω))Pr[ω] Definition of Z

= ∑
ω∈Ω

X(ω)Pr[ω] + ∑
ω∈Ω

Y (ω) ⋅Pr[ω] Distributivity

= Exp[X] +Exp[Y ] Definition of Expectation

As a corollary, by applying the above again and again k − 1 times, we get:

Theorem 2. For any k random variables X1,X2, . . . ,Xk,

Exp [
k

∑
i=1

Xi] =
k

∑
i=1

Exp[Xi]

Examples of applications.

1. We roll two fair dice. X takes the value of the sum. In this case, X = Y + Z where Y,Z are
random variables of the kind from the previous bullet point.
Tailor-made application. Exp[Y ] = Exp[Z] = 3.5, the expected value of a single roll of a die.
Thus, Exp[X] = Exp[Y +Z] = 7 by linearity of expectation.

2. We have a biased coin which lands heads with probability p. We toss it 100 times. Let Z be the
number of heads we see. What is Exp[Z]? Note that earlier we had the question for p = 0.5.

Remark: Try doing this the “first-principle” way. That is, for each 0 ≤ k ≤ 100, figure
out the probability Pr[X = k] (that is, the probability we get exactly k heads), and then
sum ∑100

k=0 k ⋅Pr[X = k]. Please try it; feel the sweat needed to do this. It will make you
appreciate the next three lines more!
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Define new random variables; define Xi to take the value 1 if the ith toss is heads, and 0 other-
wise. Note, X = X1 +X2 + ⋯ +X100. Note, Exp[Xi] = p (it is a Bernoulli random variable).
Thus, linearity of expectation gives Exp[X] = 100p.

3. n people checked in their hats, but on their way out, were handed back hats randomly. What is
the expected number of people who get their correct hats?
Define Xi to be 1 if the ith person gets his or her back correctly. What is Exp[Xi]? It is 1/n;
it is the probability that σ(i) = i for a random ordering σ. This question was there in the UGP.
Let Z = ∑n

i=1Xi. Note, Z is the number of people who get their correct hats. By linearity of
expectation, Exp[Z] = 1.

4. In a party of n people there are some pairs of people who are friends, and some pairs who
are not. In all there are m pairs of friends. The host randomly divides the party by taking each
person and sending them left or right at the toss of a fair coin. How many friends, in expectation,
are sundered apart?

Remark: In terms of graphs (which we will see soon) the question is: a graph with m
edges is randomly partitioned. How many edges, in expectation, have endpoints in different
parts?

For each pair of friends (u, v), define Xuv which takes the value 1 if u and v are split, and takes
the value 0 if u and v are not split. The probability u and v are split is 1/2 (either u is sent
left, v is sent right, or vice-versa – do you see this?). Thus, Exp[Xuv] = 1/2. Define Z =
∑(u,v)∶ friendsXuv; Z is the number of friends sent apart. Exp[Z] = ∑(u,v)∶ friends Exp[Xuv] =
m/2. In expectation, half the friendships are sundered apart.

5. In an ordering σ of (1,2, . . . , n), an inversion is a pair i < j such that σ(i) > σ(j). How many
inversions, in expectation, are there in a random permutation?
Let σ be a random permutation. Define the indicator random variable Xij for i < j, which takes
the value 1 if σ(i) > σ(j), and 0 otherwise. Note that Pr[Xij = 1] = 1

2 ; there are equally many
orderings with σ(i) > σ(j) as σ(i) < σ(j). Now note that Z = ∑n

i=1∑j>iXij is the number of

inversions in σ. Thus, Exp[Z] = ∑n
i=1∑j>nExp[Xij] = 1

2 ⋅
n(n−1)

2 .

• Independent Random Variables. Two random variables X and Y are independent, if for any x ∈
range(X) and any y ∈ range(Y ),

Pr[X = x,Y = y] = Pr[X = x] ⋅Pr[Y = y]

Examples:

– If we roll two dice, and X1 and X2 indicate the value of the rolls, then X1 and X2 are indepen-
dent.

– If we have two independent events A and B, then their indicator random variables 1A and 1B
are independent.

– Consider a random variableX taking value +1 if a toss of a coins is head, and −1 if its tails. Such
random variables are called Rademacher random variables. Suppose we toss the coin twice and
X1 and X2 are the corresponding random variables. Then X1 and X2 are independent.
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A set of k random variables X1, . . . ,Xk are mutually independent if for any x1, x2, . . . , xk with xi ∈
range(Xi), we have

Pr[X1 = x1,X2 = x2, . . . ,Xk = xk] =
k

∏
i=1

Pr[Xi = xi]

Theorem 3. If X and Y are two independent random variables, then

Exp[XY ] = Exp[X] ⋅Exp[Y ]

Proof.

Exp[XY ] = ∑
x∈range(X),y∈range(Y )

(xy) ⋅Pr[X = x,Y = y] Definition of Expectation

= ∑
x∈range(X),y∈range(Y )

(xy) ⋅Pr[X = x] ⋅Pr[Y = y] Independence

=
⎛
⎝ ∑
x∈range(X)

x ⋅Pr[X = x]
⎞
⎠
⋅
⎛
⎝ ∑
y∈range(Y )

y ⋅Pr[Y = y]
⎞
⎠

Algebra

= Exp[X] ⋅Exp[Y ] Definition of Expectation

Of course, there is no need to stick to two random variables. The theorem easily generalizes (do you
see how?) to mutually independent random variables as follows.

Theorem 4. If X1,X2, . . . ,Xk are mutually independent random variables, then

Exp [
k

∏
i=1

Xi] =
k

∏
i=1

Exp [Xi]

Examples.

– Let Xi and Xj be two independent Rademacher random variables. Recall, Xi takes +1 with
probability 1/2 and −1 with probability 1/2. Then note (a) Exp[Xi] = Exp[Xj] = 0, (b)
Exp[Xi ⋅Xi] = Exp[Xj ⋅Xj] = 1, and (c) Exp[XiXj] = Exp[Xi] ⋅Exp[Xj] = 0. This is a
very useful fact.

– Consider rolling a die n times, independently. Let Z be the random variable indicating the
product of all the numbers seen. What is Exp[Z]? To solve this, let Xi be the roll of the ith
die. We know that Exp[Xi] = 3.5 for all i. We also know X1,X2, . . . ,Xn are all independent
random variables. Thus, Exp[Z] = (3.5)n.

• Some Famous Random Variables.
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1. Bernoulli Random Variable. A random variable X ∼ Ber(p) is a Bernoulli Random Variable
with parameter p if X = 1 with probability p and 0 with probability 1 − p. Basically, a coin toss
where the probability of “heads” (with X(heads) = 1) is p instead of being 1/2.
Recall, given any event E , the indicator random variable 1E takes the value 1 if the event occurs
and 0 otherwise (more precisely, 1E(ω) = 1 for ω ∈ E and 0 otherwise); indicator random
variables are Bernoulli random variables with parameter p = Pr[E].
The expectation Exp[X] of X ∈ Ber(p) is precisely p.

2. Binomial Random Variable. A random variable X ∼ Bin(n, p) is the number of “heads” seen
when one tosses n coins independently, where each coin comes heads with probability p. In
other words, X is a sum of n independent Bernoulli random variables with probability p. The
“shape” of this random variable is precisely given by

For integer 0 ≤ k ≤ n, Pr[X = k] = (n
k
)pk(1 − p)n−k

The expectation, however, is easy to calculate using linearity of expectation : Exp[X] = np
since it’s a sum of n Bernoulli’s and each Bernoulli has expectation p.

3. Geometric Random Variable. A random variableX ∼ Geom(p) with parameter p, is the number
of times a coin whose probability of heads is p needs to be tossed before we see the first heads.
This is an interesting random variable whose range is unbounded (unlike the previous two); that
is, given any integer k, there is a finite probability that X > k. Indeed, here is the “shape” (see
you understand this)

For integer k ≥ 1, Pr[X = k] = (1 − p)k−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
the first (k − 1) tosses are tails

⋅ p
®

and the kth toss is heads

In the last lecture, we saw a random variable which counted the number of while-loops in a
snippet of code. Check that it was an example of a geometric random variable. What was its
parameter?

• Expectation of a Geometric Random Variable. One could calculate the expectation ofX ∼ Geom(p)
“directly” via a calculation of the form

Exp[X] =
∞
∑
k=1

k ⋅ (1 − p)k−1 ⋅ p

This “smells” of the sum of a geometric series. To remind every one, for any number 0 < a < 1, the
sum ∑∞i=0 a

i = 1
1−a . If the above summation didn’t have the extra “k” multiplying the thing inside the

summation, we could apply the above. However, one can still figure out the summations like above
analytically. Instead, I want to take this opportunity to show another interpretation of expectation
which is also useful to keep in mind.

Theorem 5. For any positive integer valued random variable X , one has

Exp[X] =
∞
∑
k=1

Pr[X ≥ k]
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Remark: One has the same for any random variable except if the range is not discrete the
summation must be replaced by an integration.

Proof. The proof is best illustrated by a picture. In the picture below, we are plotting the his-
togram/“shape” of the random variable. The x-axis has the positive integers. The y-axis has the
probabilities. Now note that the area of the rectangle whose bottom right corner is at the integer k
is precisely Pr[X = k]. This is because the gap between k and k − 1 is 1. In particular, the picture
below shows only 5 rectangles presumably because the range ofX is {1,2,3,4,5} and the probability
Pr[X = 1] is the area A, the probability Pr[X = 2] is the area B, and so on.

1 2 3 4 5

A B C D E

Note that the sum of the area A + B + C + D + E is precisely 1. This is because the sum of the
probabilities is 1. In particular, the area under this histogram is 1.

What is the expectation? Well, it is a weighted sum : Exp = A + 2B + 3C + 4D + 5E. The key is to
note that this sum can be thought of as taking all 5 rectangles, then taking all but the first, then taking
all but the first two, and so on. More precisely,

Exp = (A +B +C +D +E) + (B +C +D +E) + (C +D +E) + (D +E) + E

And now note the 5 different sums precisely correspond to Pr[X ≥ k]; for instance, C +D + E =
Pr[X ≥ 3]. And this proves the theorem, at least pictorially. Now that we “feel” the proof, let’s go
and write it precisely.
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Exp[X] =
∞
∑
k=1

k ⋅Pr[X = k] Definition of Expectation

=
∞
∑
k=1

k ⋅ (Pr[X ≥ k] −Pr[X ≥ k + 1]) An algebraic manipulation

=
∞
∑
k=1

Pr[X ≥ k] ⋅ (k − (k − 1)) Rearranging

=
∞
∑
k=1

Pr[X ≥ k] (1)

The algebraic manipulation uses the fact that the random variable is integer valued.

Now, we can use this to evaluate the expectation of a Geometric random variable.

Theorem 6. Let X ∼ Geom(p) be a geometric random variable with parameter p. Then,
Exp[X] = 1

p .

Proof. First let us observe that Pr[X ≥ k] = (1 − p)k−1. Why is this? Well the event {X ≥ k} is
equivalent to the first (k − 1) tosses coming in tails. Make sure you see this. Therefore,

Exp[X] = ∑
k≥1

(1 − p)k−1 = 1

p

where we directly used the sum of geometric series.
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