CS30 (Discrete Math in CS), Summer 2021 : Lecture 18

Topic: Probability: Variance

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors. Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

- Variance and Standard Deviation.

The expectation of a random variable is some sort of an "average behavior" of a random variable. However, the true value of a random variable may be no where close to the expectation. For instance, consider a random variable which takes the value 10000 with probability $1 / 2$, and -10000 with probability $1 / 2$. What is $\operatorname{Exp}[X]$? Yes, it is 0 . Thus, there is significant deviation of X from its expectation.

The variance and standard deviation try to capture this deviation. In particular, the variance of a random variable is the expected value of the square of the deviation.

Let X be a random variable. The variance of X is defined to be

$$
\operatorname{Var}[X]:=\operatorname{Exp}\left[(X-\operatorname{Exp}[X])^{2}\right]
$$

That is, if we define another random variable $D:=(X-\operatorname{Exp}[X])^{2}$, then $\operatorname{Var}[X]$ is the expected value of this new deviation random variable D.
The standard deviation $\sigma(X)$ is defined to be $\sqrt{\operatorname{Var}(X)}$.

Theorem 1. $\operatorname{Var}[X]=\operatorname{Exp}\left[X^{2}\right]-(\operatorname{Exp}[X])^{2}$.

Proof.

$$
\operatorname{Var}[X]=\operatorname{Exp}\left[(X-\operatorname{Exp}[X])^{2}\right]=\operatorname{Exp}\left[X^{2}-2 X \operatorname{Exp}[X]+(\operatorname{Exp}[X])^{2}\right]
$$

Then, we apply linearity of expectation to get

$$
\operatorname{Var}[X]=\operatorname{Exp}\left[X^{2}\right]-2 \operatorname{Exp}[X] \cdot \mathbf{E x p}[X]+(\operatorname{Exp}[X])^{2}=\mathbf{\operatorname { E x p }}\left[X^{2}\right]-(\operatorname{Exp}[X])^{2}
$$

A useful corollary (something we observed in the last lecture notes):

Theorem 2. For any random variable $\operatorname{Exp}\left[X^{2}\right] \geq(\operatorname{Exp}[X])^{2}$.

Proof. $\operatorname{Var}[X]$ is the expected value of $(X-\operatorname{Exp}[X])^{2}$. That is, $\operatorname{Var}[X]$ is the expected value of a random variable which is always non-negative. In particular, $\operatorname{Var}[X]$ is non-negative. Which in turn means $\operatorname{Exp}\left[X^{2}\right]-(\operatorname{Exp}[X])^{2} \geq 0$. Rearranging implies the corollary.

Examples

- Roll of a die. Let X be the roll of a fair 6 -sided die. We know that $\operatorname{Exp}[X]=3.5$. To calculate the variance, we can use the deviation $D:=(X-\operatorname{Exp}[X])^{2}=(X-3.5)^{2}$. Usinhg this, we get

$$
\operatorname{Var}[X]=\operatorname{Exp}[D]=\frac{1}{6}\left((2.5)^{2}+(1.5)^{2}+(0.5)^{2}+(0.5)^{2}+(1.5)^{2}+(2.5)^{2}\right)=\frac{35}{12}
$$

- Toss of a biased coin. Let X be a Bernoulli random variable taking value 1 if a coin tosses heads, and 0 otherwise. Suppose the probability of heads was p. Recall, $\operatorname{Exp}[X]=p$. Also note since X is a indicator random variable, $X^{2}=X$. Thus, $\operatorname{Exp}\left[X^{2}\right]=p$ as well. We can calculate the variance as

$$
\operatorname{Var}[X]=\operatorname{Exp}\left[X^{2}\right]-(\operatorname{Exp}[X])^{2}=p-p^{2}=p(1-p)
$$

- Indicator Random Variable. Using the above toss of a biased coin example, we see that for any event \mathcal{E}, the variance of the indicator random variable is

$$
\operatorname{Var}\left[\mathbf{1}_{\mathcal{E}}\right]=\operatorname{Pr}[\mathcal{E}] \cdot(1-\operatorname{Pr}[\mathcal{E}])=\operatorname{Pr}[\mathcal{E}] \cdot \operatorname{Pr}[\neg \mathcal{E}]
$$

Theorem 3. If X is a random variable, and c is a "scalar" (a constant), then $Z=c \cdot X$ is another random variable. $\operatorname{Var}[c \cdot X]=c^{2} \cdot \operatorname{Var}[X]$.

Proof.

$$
\operatorname{Var}[c \cdot X]=\mathbf{E x p}\left[c^{2} X^{2}\right]-(\mathbf{E x p}[c X])^{2}=c^{2} \mathbf{E x p}\left[X^{2}\right]-c^{2}(\operatorname{Exp}[X])^{2}=c \cdot \operatorname{Var}[X]
$$

The next theorem is a linearity of variance result for independent random variables.
Theorem 4. For any two independent random variables X and Y, let $Z:=X+Y$. Then,

$$
\operatorname{Var}[Z]=\operatorname{Var}[X]+\operatorname{Var}[Y]
$$

Proof. By definition of variance, we get

$$
\begin{equation*}
\operatorname{Var}[X+Y]=\operatorname{Exp}\left[(X+Y)^{2}\right]-(\operatorname{Exp}[X]+\operatorname{Exp}[Y])^{2} \tag{1}
\end{equation*}
$$

Now, we expand the first term in the RHS to get

$$
\begin{array}{rlr}
\operatorname{Exp}\left[(X+Y)^{2}\right] & =\operatorname{Exp}\left[X^{2}+2 X Y+Y^{2}\right] \\
& =\operatorname{Exp}\left[X^{2}\right]+2 \mathbf{E x p}[X Y]+\mathbf{E x p}\left[Y^{2}\right] & \text { Linearity of Expectation } \\
& =\operatorname{Exp}\left[X^{2}\right]+2 \operatorname{Exp}[X] \operatorname{Exp}[Y]+\mathbf{E x p}\left[Y^{2}\right] & \text { Since } X \text { and } Y \text { are independent. } \tag{2}
\end{array}
$$

Next, we expand the second term in the RHS of (1), to get

$$
\begin{equation*}
(\operatorname{Exp}[X]+\mathbf{E x p}[Y])^{2}=(\mathbf{E x p}[X])^{2}+2 \operatorname{Exp}[X] \mathbf{E x p}[Y]+(\operatorname{Exp}[Y])^{2} \tag{3}
\end{equation*}
$$

Subtracting (3) from (2), we get

$$
\begin{align*}
\operatorname{Var}[X+Y] & =\left(\operatorname{Exp}\left[X^{2}\right]-(\operatorname{Exp}[X])^{2}\right)+\left(\operatorname{Exp}\left[Y^{2}\right]-(\operatorname{Exp}[Y])^{2}\right) \\
& =\operatorname{Var}[X]+\operatorname{Var}[Y] \tag{4}
\end{align*}
$$

We can generalize the above proof to many random variables. In particular, we can say that if $X_{1}, X_{2}, \ldots, X_{k}$ are mutually independent random variables, then the variance of the sum is the sum of the variances. However, we don't need mutual independence. Pairwise independence suffices. The proof is given as a solution to the UGP; perhaps you can try it. There is nothing more than the algebra above except there are k things adding up.

Theorem 5. For any k pairwise independent (and therefore also for mutually independent) random variables $X_{1}, X_{2}, \ldots, X_{k}$,

$$
\operatorname{Var}\left[\sum_{i=1}^{k} X_{i}\right]=\sum_{i=1}^{k} \operatorname{Var}\left[X_{i}\right]
$$

