What I know after taking CS 30

The document serves as a review of what we have covered so far.

1 Jargon

Sets

¢ Sets: Basic Definitions.

— roster notation, set builder notation
— element €, subset c, superset >, empty set @, cardinality | - |.
— union A U B, intersection An B, set difference A\ B, Cartesian product A x B.

* Inclusion-Exclusion (baby version). For any two finite sets A and B,

|AuB|=|A|+|B|-|An B]

Functions

e f: A > B,domain: A, co-domain: B, range: {f(a):a¢€ A}.

* surjective (range = co-domain), injective (no collisions), bijective (both of the above).
* How to prove a function is surjective? injective? (“To this end, fix a ...” style)

* composition of functions: f: A— B,g: B - C gives (go f): A— C.

Logic

* Boolean Variables and Formulas, Propositional Logic.

Boolean variables take value true or false.

Using various operations (A,V,=>) we can get Boolean formulas from Boolean vari-
ables.

Every formula is defined by its truth table specifying its value on all possible settings
of the variables.

Two Boolean formulas are equivalent if and only if their truth tables are same.

* Important Equivalences in Propositional Logic.

— (Negation of Negation.) -(-p) = p.

— (Operation with true, false.) pAtrue = p; pvtrue = true; pafalse = false; pvfalse = p.
— (Idempotence.) pAp=p; pVvp=p.

— (Operation with Negation.) p A —=p = false; p Vv —p = true.



— (Irrelevance.) pv (pAq)=p; pA(pvq)=p.
— (Commutativity.) pvg=qgvp. pAg=qgADp.
- (Associativity.) pv (gvr)=(pvqg)vr pa(gar)=(parg)Aar

— (Distributivity.) pv (gar)=(pvg)A(pvr) pa(gvr)=(pag)Vv(pAar)
— (Implications as an OR.) p = g=-p v q.
- (De Morgan’s Law.) ~(pVv q) =-pA-q; —(pAq)=-pV—q.

* Predicate or First Order Logic.

— Apredicate P is a function from a domain (called the domain of discourse) to {true, false}.

Given predicates, we can use quantifiers (¥, 3) to define formulas in predicate logic.

It’s handy to think of Vx € S : P(x) as a collection of A’s.

It’s handy to think of 3x € S : P(z) as a collection of V's.

Using this, we get -=(VYz € S: P(x)) = 3z : =P(z), and - (3x € S: P(x)) = Yz :

-P(z)

— Caution: V’s and v’s do not distribute. That is, Vx € S : (P(x) v Q(x)) is in general
different from (Vx € S: P(x)) v (Vz e S:Q(x)).

— Quantifiers can be nested.

— Order is super important. Yz, 3y : P(x,y) and 3x,Vy : P(x,y) are completely differ-
ent.

— Negation of a nested quantifier statement is another nested quantifier statement.



2 Proofs

By Contradiction

» To prove a proposition p, one assumes the opposite/negation, and then deduces something
absurd.

If =p, then prove q occurs and —q occurs, for some possibly different
proposition q.

e Usual structure:

— Suppose not. That is —p is true.
— Then interpret what —p means in English. That is, what does the converse mean.
— Think why this can lead to q and —q for some q

* Examples seen in class

— /2 1s irrational.

x If not, there are two integers a and b such that V2= 7
% Can assume gcd(a,b) = 1.
x Deduce, by taking squares, both a and b are even.

— Infinitely many primes.

x If not, there are finitely many primes. And so there is a largest prime q.
x Trick: Look at @) := ¢! + 1.
% () is not a prime, and yet no prime divides it.

By Induction

* Used to prove statements of the form

VneN: P(n)

e Usual structure:

— First figure out what P(n) is.

— Base Case: Establish P(1) is true. Sometimes, one needs to do a bit more, that is,
prove P(2), P(3) is also true.

— Inductive Case: Then try to show for any k greater than or equal to the last base case
checked,

Assuming P(k) is true, prove that P(k + 1) is true.
or, even better
Assuming P(1), P(2),..., P(k) is true, prove that P(k + 1) is true.
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The former is called weak induction, the latter is called strong induction. This is just
jargon. Use strong induction whenever you can.
— Since we have to show the inductive case for every k, this is done by first fixing a k.

Induction can also be used for proving statements which don’t obviously look of the form
Vn € N: P(n). For example, induction was used to show the correctness of code, that is,
statement of the form

For every possible input, the code works
One way to cast it into the Vn € N : P(n) format, one defines P(n) as true if
For every possible input of size n, the code works

We will see this principle more when we talk about graphs.

General Proof Writing Principles

Proofs are written in many drafts. The first draft has a vague collection of ideas. The second
refines it. The third perfects it.

Whenever you see a statement of the form
“Prove for all/every/any object foo with property bar”

Fix an arbitrary such object foo and call it k£ (or Sam, if it helps you think). Why? Because
in the subsequent arguments you can keep referring to this particular £.

Similarly, when you deduce
“There exists an object foo with property bar”
again, call it something — k or Mary, or whatever works.
More generally, use names (variables) as much as possible. This frees up mental space.
On that note, write every thought you have down on paper. Less stuff to keep in your head.

A proof is nothing but a story — and just like stories, they get better with rewriting.



3 Combinatorics

* The Product Principle. If we need to count a number of valid length £ sequences, which
satisfies the following property: the first character has N; choices, and for every choice of
the first character, the second character has N, choices, and given any choices of the first
two characters, there are /N3 choices for the third character, and so on and so forth, the kth
character has /V; choices, then the number of valid sequences is /Ny - Ny---N.

Armed with this, we can count the

— Number of length n bit strings (Ans: 2")

— Number of permutations of (1,2,...,n) (Ans: n!)

— Number of seven letter words with no vowels. (Ans: figure it out!)

— Number of four digit number whose first two digits sum to exactly 5. (Ans: figure it
out!)

e The Sum Principle (I). If S is the set of items we want to count (that is, we are trying
to figure out |S|), and S can be partitioned into subsets Aj, As, ..., Ay which are pairwise
disjoint, where each A, is easy to count, then we can count S using |S| = | Ay |+|Az|+---+| Akl

Armed with this, we can count the

— Number of four digit number whose first two digits sum to 8.
— Number of length n bit strings with exactly two ones.

Another way this principle is used when one wants to count the “negation” of the set. That
is, if S is a subset of a certain “universe” U such that (a) U is easy to count, and (b) U \ S'is
easy to count, then the sum principle shows that |S| = |U| - |U \ S|. Armed with this, we can
count the

— Number of 8-bit strings with at least 2 ones.
— Number of 5 digit numbers with at least one digit odd.
— Number of 4 letter words with at least one consonant.

* The Sum Principle (II): Inclusion-Exclusion. At times, it is hard to partition the set S into
disjoint subsets. Instead, suppose we can find sets A and B which are easy to count, and AnB
is also easy to count, and S = AuB, then we can figure out |S| by using |S| = |A|+|B|-|AnB|.
If we can find three sets A, B, C' such that S = AuBu(C, and A, B, C' and all the intersections
are easy to count, then we can figure out |S| by the (toddler) version of inclusion-exclusion:
IS|=|A|+|B|+|C|-|AnB|-|AnC|-|BnC|+|An BnC|. And why stop there; when S
is the union of k sets Ay, ..., Ay and all the intersections are easy to count, then indeed, |S]
can be found by the general inclusion-exclusion formula.

Armed with this, we can count

— How many numbers between 1 and 100 are divisible by 2 or 3?
— How many numbers between 1 and 100 are divisible by 2, 3, or 5?
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— How many length 10 bit strings start with 3 zeros or end with 3 zeros?
* The Bijective Principle. If we can find a bijection f : A — S from a set A to our set S,
where A is easy to count, then we have counted S since |S| = |A|.
Using this, we see that Subsets of an n-sized set is in one-to-one correspondence with n-

length bit strings. Armed with this, we can count

— The cardinality of the power set, that is, the number of subsets of a n sized set.
— The number of subsets containing a particular element a.
— The number of odd-cardinality subsets.

* The Division Principle. If we can find a mapping f : A — S from a set A, which is easy to

count, to our set S in consideration, such that for all s € S, we have |[{a € A: f(a) = s}| =k,
then |S| = | A|/k.

Armed with this, we can count the

— Number of anagrams of the word MASSACHUSETTS.
— Number of ways we can arrange 5 red balls, 4 orange balls, and 3 yellow balls in a
line.

Indeed, we have the following formula

If we have n, objects of type 1, n, objects of type 2, and so on, till n; objects of
type k, then the number distinct ways we can arrange them in a line is

(n1+ng+-+ng)!

nilng!--ng!

In particular, if the object of type 1 is the number one and there are k of them, and the object
of type 2 is the number zero and there are (n — k) of them, for some two numbers n and £,
then the number of ways of arranging k ones and (n — k) zeros in a line is #lk)' But this is
precisely the number of n length bit strings with exactly £ ones. Using the equivalence (see

above) between subsets and bit strings, we see that

The number of subsets of size exactly £ of an n sized set is precisely ﬁlk),

This quantity is called (’;) pronounced “n choose £” — it is the number of ways one can
choose (an unordered collection) of £ objects from n objects.

* The Four Fold Formula. If we have to choose £ items out of (many copies of) n distinct
items, how many ways can we do it? The answer depends on whether we are allowed to pick
more than one copy of an item (repetition), and whether or not the order in which we pick
the £ items matters.



Order Matters | Order Doesn’t Matter
Repetition nk (m]l:_l)
No Repetition —(n‘ji{)! }) = o (:ik)!

* Combinatorial Identities. A very useful way of proving identities (equations) is to show
that the LHS and the RHS are just two different ways of counting the size of the same set.
Using this idea, we can show the following

~ (Pascal’s Identity). (}) = (".') + (1))-

— (Binomial Expansion). (z +y)" = Yr_o (1) *y*.
The Binomial Expansion, in turn, implies

- Yio(})=2"(setx=1,y=1).

= k=0 (:) (_1)k =0(setzx=1,y=-1)

~ Yio(P)2k =3 (setz =1,y =2).
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