# CS30 (Discrete Math in CS), Summer 2021 <br> Drill $13+\mathbf{1 5}$ Topic: Probability : Basics + Conditional Probability + Bayes 

## Instructions

- Please submit all homework electronically in PDF, ideally typeset using LaTeX. If your handwriting is not legible, you may get 0 points.
- The drills below are supposed to be quick to do and quick to check. If a grader cannot read and understand your solution to a given drill exercise in $\mathbf{1}$ minute, you may get a 0 .
- Collaboration Policy: You should be able to and indeed should do the drills on your own. Collaboration is not allowed. You can ask clarification questions on Ed Discussion privately; the instruction team may choose to make it public. You can refer to the recommended textbook, your own course notes, posted videos, and the posted lecture notes. Not the web. When in doubt, consult the instructor.


## Exercise 1. (3 points)

Let $n$ be positive integer. Suppose you toss $n$ different fair coins which fall heads with probability $1 / 2$ and tails with probability $1 / 2$. What is the probability of seeing exactly $\lfloor n / 2\rfloor$ heads? Your answer should be a function of $n$, and you should give a short reason for your answer. When $n$ is large (say $>1000$ ), is your answer closer to (a) $1 / 2$, (b) $1 / \sqrt{n}$, or (c) $1 / n$ ? Use what you learned in Drill 12.

Exercise 2. (3 points) We toss a fair coin independently 10 times. Let $\mathcal{E}$ be the event we see $\geq 9$ heads. Let $\mathcal{F}$ be the event that we see $\geq 8$ heads. What is the probability $\operatorname{Pr}[\mathcal{F} \mid \mathcal{E}]$ ? This answer should be immediate without any calculation. Give that reason.

What is the probability $\operatorname{Pr}[\mathcal{E} \mid \mathcal{F}]$ ? This will involve some calculation. Leave your answer as a fraction and show your work.

## Exercise 3. (4 points)

As you all know, $0.1 \%$ of all human beings are Wandbearers, and they are uniformly spread out all over the world. The Ministry of Magic has trained Fluffy, the three headed dog, to sniff out Wandbearers, and it always detects a Wandbearer correctly. The slight nag is that Fluffy sometimes wrongly sniffs out Muggles (non-Wandbearers) too, but this happens only $1 \%$ of the time.

You see your friend being dragged away by the Ministry authorities after being sniffed out by Fluffy. What are the chances that she indeed is a Wandbearer?

Be precise in the events you define before you apply Bayes rule. If you just write down a fraction, you won't get any points till you define your events.

