
CS30 (Discrete Math in CS), Summer 2021 : Lecture 8 Supp
Topic: Induction

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.
Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

Minimal Counterexample: A Different look at Induction

There is a different, and equivalent, at looking at mathematical induction proofs which, at times, may be
more suitable. This is more of a “proof by contradiction” viewpoint. One assumes the assertion is false,
picks the minimal counterexample to the statement at hand, and then tries to argue a contradiction. To make
things concrete, let is give a “different” proof of something we saw in class.

Theorem 1. Every natural number ≥ 2 can be written as a product of primes and 1.

Proof. Suppose not. Let n be the minimal counter example to the statement, that is, it is smallest number
which cannot be written as a product of primes and 1. Then n cannot be a prime, for a prime is a product of
primes and 1. So, n = a× b for two numbers a and b which are < n. Since n is the minimal counter example,
both a and b can be expressed as a product of primes and 1. And thus, so can n which is a contradiction to
n being a counterexample.

Indeed, the above is the same proof. But the mental image one has can differ. Let’s give another example.
In the UGP, you are asked to prove this by induction.

Theorem 2. Suppose a finite number of players play a round-robin tournament, with everyone playing
everyone else exactly once. Each match has a winner and a loser (no ties). We say that the tournament
has a cycle of length m if there exist m distinct players (p1, p2, . . . , pm) such that p1 beats p2, p2 beats
p3, ⋯, pm−1 beats pm, and pm beats p1. Clearly this is possible only for m ≥ 3. If a tournament has at
least one cycle, then it has a cycle of length exactly 3.

Proof. Let us consider a tournament with a cycle, and consider among all cycles in the tournament, any one
with the smallest length. Let this be C = (p1, p2, . . . , pm) with length m. If m = 3, we are done. Therefore,
suppose, for contradiction’s sake, m > 3. Now consider the players p1 and p3. Since there are no ties, either
p1 beats p3 or p3 beats p1. If p3 beats p1, then (p1, p2, p3) is a shorter cycle (indeed its length is 3). If p1
beats p3, then (p1, p3, p4, . . . , pm) is a shorter cycle of length m − 1. This contradicts that C was a smallest
cycle. Thus, m = 3.

The Well-Ordering Principle and PMI

What we have used before, implicitly and rather matter-of-fact-ly, is the following axiom called the well-
ordering principle (WOP).

Any non-empty subset S ⊆ N has a minimum element x ∈ S. (WOP)

An element x ∈ S is minimum if for all y ∈ S ∖ x, we have x < y.
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Remark: Note that S needs to be non-empty. More importantly, note that if S ⊆ Z, then the above
statement is false; consider the set S to be of all negative integers. Finally, note if S ⊆ Q+, that is, if
it is a subset of positive rationals, then the statement would be false too. Indeed, let S be the set of all
rationals strictly greater than 0. Do you see why S doesn’t have a minimum?

In both the above applications, we have used this principle on a subset generated by the counterexamples.
In the prime factorization example, S was the subset of numbers which cannot be written as a product of
primes and 1. In the tournament example, S was the lengths of the smallest cycles in tournaments which
have cycles but none of length 3. The fact that S was not empty was assumed for contradiction’s sake. And
then the minimal element was used for obtaining a contradiction.

Let us end by showing that the WOP can be used to prove the principle of mathematical induction (PMI).
Recall, the principle of mathematical (strong) induction (PMI) states that

Theorem 3 (Induction). Given predicates P (1), P (2), P (3), . . ., if

• P (1) is true (base case); and

• For all k ∈ N, (P (1) ∧ P (2) ∧⋯ ∧ P (k))⇒ P (k + 1) (inductive case);

then, ∀n ∈ N ∶ P (n) is true.

Proof. Suppose not. That is, the base case and the inductive case holds, but P (n) is false for some non-
negative integer n. Indeed, let S ⊆ N be the subset of non-negative integers n for which P (n) is false. By
our supposition, S is non-empty. Therefore, by WOP, S has a minimal element x.

Now x > 1 because P (1), as we know by the base-case, is true. Thus the set {1,2, . . . , x − 1} is not
empty. Furthermore, since 1,2, . . . , x − 1 are all strictly < x, and x is the minimum element of S, none of
these elements can be in S. Therefore, P (1), P (2), . . . , P (x − 1) are all true. Thus, P (1) ∧⋯ ∧ P (x − 1)
is true. The inductive case then implies P (x) is true. But this contradicts the fact that x ∈ S. Thus our
supposition is false, and hence PMI is true.
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