CS30 (Discrete Math in CS), Summer 2021 : Lecture 8 Supp

Topic: Induction

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors. Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

Minimal Counterexample: A Different look at Induction

There is a different, and equivalent, at looking at mathematical induction proofs which, at times, may be more suitable. This is more of a "proof by contradiction" viewpoint. One assumes the assertion is false, picks the minimal counterexample to the statement at hand, and then tries to argue a contradiction. To make things concrete, let is give a "different" proof of something we saw in class.

Theorem 1. Every natural number ≥ 2 can be written as a product of primes and 1.
Proof. Suppose not. Let n be the minimal counter example to the statement, that is, it is smallest number which cannot be written as a product of primes and 1 . Then n cannot be a prime, for a prime is a product of primes and 1 . So, $n=a \times b$ for two numbers a and b which are $<n$. Since n is the minimal counter example, both a and b can be expressed as a product of primes and 1 . And thus, so can n which is a contradiction to n being a counterexample.

Indeed, the above is the same proof. But the mental image one has can differ. Let's give another example. In the UGP, you are asked to prove this by induction.

> Theorem 2. Suppose a finite number of players play a round-robin tournament, with everyone playing everyone else exactly once. Each match has a winner and a loser (no ties). We say that the tournament has a cycle of length m if there exist m distinct players $\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ such that p_{1} beats p_{2}, p_{2} beats p_{3}, \cdots, p_{m-1} beats p_{m}, and p_{m} beats p_{1}. Clearly this is possible only for $m \geq 3$. If a tournament has at least one cycle, then it has a cycle of length exactly 3 .

Proof. Let us consider a tournament with a cycle, and consider among all cycles in the tournament, any one with the smallest length. Let this be $C=\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ with length m. If $m=3$, we are done. Therefore, suppose, for contradiction's sake, $m>3$. Now consider the players p_{1} and p_{3}. Since there are no ties, either p_{1} beats p_{3} or p_{3} beats p_{1}. If p_{3} beats p_{1}, then $\left(p_{1}, p_{2}, p_{3}\right)$ is a shorter cycle (indeed its length is 3). If p_{1} beats p_{3}, then $\left(p_{1}, p_{3}, p_{4}, \ldots, p_{m}\right)$ is a shorter cycle of length $m-1$. This contradicts that C was a smallest cycle. Thus, $m=3$.

The Well-Ordering Principle and PMI

What we have used before, implicitly and rather matter-of-fact-ly, is the following axiom called the wellordering principle (WOP).

Any non-empty subset $S \subseteq \mathbb{N}$ has a minimum element $x \in S$.
(WOP)
An element $x \in S$ is minimum if for all $y \in S \backslash x$, we have $x<y$.

Remark: Note that S needs to be non-empty. More importantly, note that if $S \subseteq \mathbb{Z}$, then the above statement is false; consider the set S to be of all negative integers. Finally, note if $S \subseteq \mathbb{Q}_{+}$, that is, if it is a subset of positive rationals, then the statement would be false too. Indeed, let S be the set of all rationals strictly greater than 0 . Do you see why S doesn't have a minimum?

In both the above applications, we have used this principle on a subset generated by the counterexamples. In the prime factorization example, S was the subset of numbers which cannot be written as a product of primes and 1. In the tournament example, S was the lengths of the smallest cycles in tournaments which have cycles but none of length 3 . The fact that S was not empty was assumed for contradiction's sake. And then the minimal element was used for obtaining a contradiction.

Let us end by showing that the WOP can be used to prove the principle of mathematical induction (PMI). Recall, the principle of mathematical (strong) induction (PMI) states that

Theorem 3 (Induction). Given predicates $P(1), P(2), P(3), \ldots$, if

- $P(1)$ is true (base case); and
- For all $k \in \mathbb{N},(P(1) \wedge P(2) \wedge \cdots \wedge P(k)) \Rightarrow P(k+1)$ (inductive case);
then, $\forall n \in \mathbb{N}: P(n)$ is true.

Proof. Suppose not. That is, the base case and the inductive case holds, but $P(n)$ is false for some nonnegative integer n. Indeed, let $S \subseteq \mathbb{N}$ be the subset of non-negative integers n for which $P(n)$ is false. By our supposition, S is non-empty. Therefore, by WOP, S has a minimal element x.

Now $x>1$ because $P(1)$, as we know by the base-case, is true. Thus the set $\{1,2, \ldots, x-1\}$ is not empty. Furthermore, since $1,2, \ldots, x-1$ are all strictly $<x$, and x is the minimum element of S, none of these elements can be in S. Therefore, $P(1), P(2), \ldots, P(x-1)$ are all true. Thus, $P(1) \wedge \cdots \wedge P(x-1)$ is true. The inductive case then implies $P(x)$ is true. But this contradicts the fact that $x \in S$. Thus our supposition is false, and hence PMI is true.

