CS30 (Discrete Math in CS), Summer 2021 : Ungraded Practice Problems 2
 Due: Not for Submission
 Topics: Proofs

1 Contradiction

Problem 1 (The Pigeon Hole Principle).
Let n be a positive integer. Suppose there are $n+1$ pigeons residing in n pigeonholes. Then prove there must exist at least one hole with at least two pigeons.

Problem 2.

Prove that $\sqrt{6}$ is irrational.

Problem 3.

Prove that $\sqrt{3}+\sqrt{2}$ is irrational.

Problem 4.

There can be no integers x and y such that $4 x^{2}=y^{2}+1$.

Problem 5.

Consider the real number $r=a+b \sqrt{2}$ where a and b are rational numbers. Prove that there cannot exist a different pair of rational numbers (c, d) such that $r=c+d \sqrt{2}$.

2 Induction

Problem 6.

Prove by induction that $\sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$.

Problem 7.

Prove by induction that $4^{n}<n!$ if n is an integer greater than 8 .

Problem 8.

Prove by induction that $4^{n+1}+5^{2 n-1}$ is divisible by 21 whenever n is a positive integer.

Problem 9.

Prove that any number $n \geq 12$ can be written as $n=4 x+5 y$ for some non-negative integers x and y.

Problem 10.

Prove that any natural number $n \in \mathbb{N}$ can be written as a sum of one or more, distinct powers of 2 (note 1 is also a power of 2).

Problem 11.

Consider the following recurrence: $t_{1}=1, t_{2}=3$, and $t_{n}=t_{\lceil n / 2\rceil}+t_{\lfloor n / 2\rfloor}+1$ for all $n \geq 3$. Prove that

$$
\forall n \in \mathbb{N}: \quad t_{n}=2 n-1
$$

Problem 12.

Suppose a finite number of players play a round-robin tournament, with everyone playing everyone else exactly once. Each match has a winner and a loser (no ties). We say that the tournament has a cycle of length m if there exist m distinct players $\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ such that p_{1} beats p_{2}, p_{2} beats p_{3}, \cdots, p_{m-1} beats p_{m}, and p_{m} beats p_{1}. Clearly this is possible only for $m \geq 3$.

Prove that if such a tournament has a cycle of length m, for some $m \geq 3$, then it must have a cycle of length exactly 3 .

Problem 13 (Merge-Sort Correctness). In this exercise, you are going to prove the correctness of MERGESort, an algorithm that you may have seen before to sort an array of numbers.
a. Prove by induction on $n+m$ that the MERGE algorithm given below satisfies the following property: for any $m, n \geq 0$, given two sorted (increasing) arrays $X[1: m]$ and $Y[1: n], \operatorname{Merge}(X[1:$ $m], Y[1: n])$ returns a sorted array containing all elements of X and all elements of Y.

```
procedure \(\operatorname{MERGE}(X[1: m], Y[1: n]) \triangleright\) Assumes \(X, Y\) are sorted arrays
    \(\triangleright\) Returns a sorted array containing all elements of \(X\) and all elements of \(Y\).
    if \(n=0\) then:
        return \(X\).
    else if \(m=0\) then:
        return \(Y\).
        \(\triangleright\) If the code reaches here then both \(m\) and \(n\) are \(>0\).
    else:
        if \(X[m]>Y[n]\) then:
            return \(\operatorname{Merge}(X[1: m-1], Y[1: n])\) followed by \(X[m]\).
        else: \(\triangleright x[m] \leq Y[n]\) here
            return \(\operatorname{Merge}(X[1: m], Y[1: n-1])\) followed by \(Y[n]\).
```

b. Prove by induction that MergeSort takes input an array $A[1: n]$ and returns a sorted order of the elements of $A[1: n]$. For this part you may assume Merge works property (even if you were not able to prove Part (a)).

```
procedure MergeSort( \(A[1: n]\) )
    \(\triangleright\) Returns the sorted order of \(A[1: n]\).
    if \(n=1\) then:
        return \(A\).
    else:
        \(m=\lfloor n / 2\rfloor\).
        \(L:=\operatorname{MergeSort}(A[1: m])\)
        \(R:=\operatorname{MergeSort}(A[m+1: n])\)
        return \(\operatorname{Merge}(L, R)\).
```

Problem 14. Consider the following implementation of Binary Search in a non-recursive fashion.

```
procedure \(\operatorname{BINSEARCH}(A[1: n], x): \triangleright\) Assume \(A\) is sorede strictly increasing.
    \(\triangleright\) Returns true if \(x \in A\), otherwise returns false.
    \(L \leftarrow 1 ; U \leftarrow n\)
    while \(L \leq U\) do:
        \(m \leftarrow\left\lfloor\frac{L+U}{2}\right\rfloor\)
        if \(A[m]=x\) then:
            return true
        else if \(A[m]<x\) then:
            \(L \leftarrow m+1\).
        else:
            \(U \leftarrow m-1\)
    return false.
```

Prove this program correct by providing
a. The (Pre) and (Post) Conditions.
b. Establish a loop invariant (LI) and prove that it always holds, and on termination implies (Post).
c. Argue that the while loop terminates.

Hint : Take a peek at the solutions to see the (Pre), (Post), and (LI), and then try to prove the rest.

Problem 15.

Suppose you begin with a pile of n stones and split this pile into n piles of one stone each by successively splitting a pile of stones into two smaller piles. For example, if the initial pile has four stones (i.e., $n=4$), one possibility is:

- split the initial pile with 4 stones into two piles of 2 stones each.
- split one of the piles with 2 stones into two piles with 1 stone each.
- split the other pile with 2 stones into two piles with 1 stone each.

Another possibility is:

- split the initial pile with 4 stones into two piles, one with 3 stones and the other with 1 stone.
- split the pile with 3 stones into one pile with 2 stones and one pile with 1 stone.
- split the pile with 2 stones into two piles with 1 stone each.

Each time you split a pile with $(r+s)$ stones into two piles, one with r stones and one with s stones, you pay $r s$ dollars to the bank. Prove that no matter how you play the game, in the end you always pay $\frac{n(n-1)}{2}$ dollars to the bank.
(For example, in the first illustration above, the sum of products is $2 \times 2+1 \times 1+1 \times 1=6$. In the second illustration above, the sum of products is $3 \times 1+2 \times 1+1 \times 1=6$. They are both 6 , which is $n(n-1) / 2=4(4-1) / 2$, as stated by the claim I am asking you prove.)

Problem 16 (The Inclusion-Exclusion Formula (Grown up version)).
In this problem, $A_{1}, A_{2}, \ldots, A_{n}$ are finite sets. $[n]$ is a shorthand for the set $\{1,2,3 \ldots, n\}$. Given any subset $S \subseteq[n], \bigcap_{i \in S} A_{i}$ is the interesection of the sets named A_{i} for all $i \in S$. You will be proving the general inclusion-exclusion formula which states

$$
\text { For any } n \text { finite sets } A_{1}, \ldots, A_{n}: \quad\left|\bigcup_{i=1}^{n} A_{i}\right|=\sum_{S \subseteq[n]: S \neq \emptyset}(-1)^{|S|-1}\left|\bigcap_{i \in S} A_{i}\right| \quad \quad \text { (IncExc) }
$$

a. Let A_{1}, \ldots, A_{n+1} be a collection of sets. Prove that

$$
\left(\bigcup_{i=1}^{n} A_{i}\right) \cap A_{n+1}=\bigcup_{i=1}^{n}\left(A_{i} \cap A_{n+1}\right)
$$

b. Prove (IncExc) using mathematical induction.

