
CS30 (Discrete Math in CS), Summer 2021 : Ungraded Practice Problems 2
Due: Not for Submission

Topics: Proofs

1 Contradiction

Problem 1 (The Pigeon Hole Principle). K
Let n be a positive integer. Suppose there are n+1 pigeons residing in n pigeonholes. Then prove there

must exist at least one hole with at least two pigeons.

Problem 2. K
Prove that

√
6 is irrational.

Problem 3. KK
Prove that

√
3 +
√
2 is irrational.

Problem 4. K
There can be no integers x and y such that 4x2 = y2 + 1.

Problem 5. KK
Consider the real number r = a + b

√
2 where a and b are rational numbers. Prove that there cannot

exist a different pair of rational numbers (c, d) such that r = c+ d
√
2.

2 Induction

Problem 6. K
Prove by induction that

∑n
i=1 i

3 =
(
n(n+1)

2

)2
.

Problem 7. K
Prove by induction that 4n < n! if n is an integer greater than 8.

Problem 8. K
Prove by induction that 4n+1 + 52n−1 is divisible by 21 whenever n is a positive integer.

1

Problem 9. KK
Prove that any number n ≥ 12 can be written as n = 4x+ 5y for some non-negative integers x and y.

Problem 10. KK
Prove that any natural number n ∈ N can be written as a sum of one or more, distinct powers of 2 (note

1 is also a power of 2).

Problem 11. KK
Consider the following recurrence: t1 = 1, t2 = 3, and tn = tdn/2e + tbn/2c + 1 for all n ≥ 3. Prove

that
∀n ∈ N : tn = 2n− 1

Problem 12. KK
Suppose a finite number of players play a round-robin tournament, with everyone playing everyone else

exactly once. Each match has a winner and a loser (no ties). We say that the tournament has a cycle of length
m if there exist m distinct players (p1, p2, . . . , pm) such that p1 beats p2, p2 beats p3, · · · , pm−1 beats pm,
and pm beats p1. Clearly this is possible only for m ≥ 3.

Prove that if such a tournament has a cycle of length m, for some m ≥ 3, then it must have a cycle of
length exactly 3.

Problem 13 (Merge-Sort Correctness). In this exercise, you are going to prove the correctness of MERGE-
SORT, an algorithm that you may have seen before to sort an array of numbers.

a. Prove by induction on n+m that the MERGE algorithm given below satisfies the following property:
for any m,n ≥ 0, given two sorted (increasing) arrays X[1 : m] and Y [1 : n], MERGE(X[1 :
m], Y [1 : n]) returns a sorted array containing all elements of X and all elements of Y . KK

1: procedure MERGE(X[1 : m], Y [1 : n]) . Assumes X,Y are sorted arrays

2: . Returns a sorted array containing all elements of X and all elements of Y .
3: if n = 0 then:
4: return X .
5: else if m = 0 then:
6: return Y .
7: . If the code reaches here then both m and n are > 0.
8: else:
9: if X[m] > Y [n] then:

10: return MERGE(X[1 : m− 1], Y [1 : n]) followed by X[m].
11: else: . X[m] ≤ Y [n] here

12: return MERGE(X[1 : m], Y [1 : n− 1]) followed by Y [n].

b. Prove by induction that MERGESORT takes input an array A[1 : n] and returns a sorted order of the
elements of A[1 : n]. For this part you may assume MERGE works property (even if you were not
able to prove Part (a)). K

2

1: procedure MERGESORT(A[1 : n])
2: . Returns the sorted order of A[1 : n].
3: if n = 1 then:
4: return A.
5: else:
6: m = bn/2c.
7: L := MERGESORT(A[1 : m])
8: R := MERGESORT(A[m+ 1 : n])
9: return MERGE(L,R).

Problem 14. Consider the following implementation of Binary Search in a non-recursive fashion.

1: procedure BINSEARCH(A[1 : n], x) : . Assume A is sorted strictly increasing.

2: . Returns true if x ∈ A, otherwise returns false.
3: L← 1; U ← n
4: while L ≤ U do:
5: m← bL+U

2 c
6: if A[m] = x then:
7: return true
8: else if A[m] < x then:
9: L← m+ 1.

10: else:
11: U ← m− 1

12: return false.

Prove this program correct by providing

a. The (Pre) and (Post) Conditions.

b. Establish a loop invariant (LI) and prove that it always holds, and on termination implies (Post).

c. Argue that the while loop terminates.

Hint : Take a peek at the solutions to see the (Pre), (Post), and (LI), and then try to prove the rest.

Problem 15. KK
Suppose you begin with a pile of n stones and split this pile into n piles of one stone each by successively

splitting a pile of stones into two smaller piles. For example, if the initial pile has four stones (i.e., n = 4),
one possibility is:

• split the initial pile with 4 stones into two piles of 2 stones each.
• split one of the piles with 2 stones into two piles with 1 stone each.
• split the other pile with 2 stones into two piles with 1 stone each.

3

Another possibility is:

• split the initial pile with 4 stones into two piles, one with 3 stones and the other with 1 stone.
• split the pile with 3 stones into one pile with 2 stones and one pile with 1 stone.
• split the pile with 2 stones into two piles with 1 stone each.

Each time you split a pile with (r+s) stones into two piles, one with r stones and one with s stones, you
pay rs dollars to the bank. Prove that no matter how you play the game, in the end you always pay n(n−1)

2
dollars to the bank.

(For example, in the first illustration above, the sum of products is 2 × 2 + 1 × 1 + 1 × 1 = 6. In the
second illustration above, the sum of products is 3 × 1 + 2 × 1 + 1 × 1 = 6. They are both 6, which is
n(n− 1)/2 = 4(4− 1)/2, as stated by the claim I am asking you prove.)

Problem 16 (The Inclusion-Exclusion Formula (Grown up version)). KKK
In this problem, A1, A2, . . . , An are finite sets. [n] is a shorthand for the set {1, 2, 3 . . . , n}. Given any

subset S ⊆ [n],
⋂

i∈S Ai is the interesection of the sets named Ai for all i ∈ S. You will be proving the
general inclusion-exclusion formula which states

For any n finite sets A1, . . . , An :
∣∣∣ n⋃
i=1

Ai

∣∣∣ = ∑
S⊆[n]:S 6=∅

(−1)|S|−1
∣∣∣ ⋂
i∈S

Ai

∣∣∣ (IncExc)

a. Let A1, . . . , An+1 be a collection of sets. Prove that(
n⋃

i=1

Ai

)
∩An+1 =

n⋃
i=1

(Ai ∩An+1)

b. Prove (IncExc) using mathematical induction.

4

	Contradiction
	Induction

