CS30 (Discrete Math in CS), Summer 2021 Drill 6+7 Topic: Induction

Instructions

- Please submit all homework electronically in PDF, ideally typeset using LaTeX. If your handwriting is not legible, you may get 0 points.
- The drills below are supposed to be quick to do and quick to check. If a grader cannot read and understand your solution to a given drill exercise in **1 minute**, you may get a 0.
- **Collaboration Policy:** You should be able to and indeed should do the drills on your own. Collaboration is not allowed. You can ask clarification questions on Ed Discussion **privately**; the instruction team may choose to make it public. You can refer to the recommended textbook, your own course notes, posted videos, and the posted lecture notes. **Not** the web. When in doubt, consult the instructor.

Exercise 1. (4 points)

Prove using induction:

For all natural numbers
$$n$$
, $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$

Clearly write:

- The predicate P(n).
- Establish the base case.
- In the inductive case, clearly state the inductive hypothesis, that is, what you are assuming is true, and clearly state what you want to prove.

Exercise 2. (4 points) The Fibonacci numbers are defined as $F_1 = 1, F_2 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 3$. Prove that $F_n \le 2^n$. Clearly write:

- The predicate P(n).
- Establish the base case.
- In the inductive case, clearly state the inductive hypothesis, that is, what you are assuming is true, and clearly state what you want to prove.

Exercise 3. (2 points)

Find which line has a bug in the following "proof" of a blatantly wrong statement. Clearly state what is wrong.

Claim 1. Let S be any non-empty finite subset of \mathbb{N} . Then either all numbers in S are odd or all numbers in S are even.

Proof.

- 1. Let P(n) be the predicate "Any subset $S \subseteq \mathbb{N}$ with |S| = n either consist entirely of even numbers or consist entirely of odd numbers. We need to prove $\forall n \in \mathbb{N} : P(n)$. We proceed by induction.
- 2. We check the **base case**, that is, we assert P(1) is true. Indeed, any subset $S \subseteq \mathbb{N}$ with |S| = 1 consists of a single number. This number is either odd or even. In the first case, all elements of S are odd; in the second case, all elements of S are even.
- 3. We proceed to the **inductive case**. Fix a natural number k and assume P(k) is true. That is, we assume that for *any* subset $S \subseteq \mathbb{N}$ with |S| = k, either all its elements are odd, or all its elements are even. We need to prove P(k + 1) is true.
- 4. In order to do so, fix a set $S \subseteq \mathbb{N}$ such that |S| = k + 1. Call its elements $\{a_1, a_2, \ldots, a_{k+1}\}$. We need to show either all the a_i 's are odd, or all the a_i 's are even.
- 5. Consider the subset $T_1 \subseteq S$ defined as $T_1 = \{a_1, \ldots, a_k\}$. Note $|T_1| = k$. Therefore, by the induction hypothesis that P(k) is true, either all elements of T_1 are odd, or all elements of T_1 are even. Suppose they are all odd, that is, all the elements a_1, \ldots, a_k are odd. In particular, a_2 is odd.
- 6. Now consider the subset $T_2 \subseteq S$ defined as $\{a_2, \ldots, a_{k+1}\}$. Note $|T_2| = k$. Therefore, by the induction hypothesis that P(k) is true, either all elements of T_2 are odd, or all elements of T_2 are even. But $a_2 \in T_2$, and a_2 is odd. Therefore all the elements of T_2 are odd, and in particular a_{k+1} is odd.
- 7. Therefore, from Line 5 and Line 6, we conclude all the elements of S are odd. Indeed, if in Line 5, we would have assumed that all elements of T_1 were even, that would imply all the elements of S are even. In any case, all the elements of S are either even or odd. That is, we have established P(k + 1), and therefore, by induction, we have established $\forall n \in \mathbb{N} : P(n)$.