
CS30 (Discrete Math in CS), Summer 2021 : Lecture 3supp
Topic: An application

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.
Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

In this supplement, we show a simple, toy example how logic can be used to formally prove theorems.
Imagine a situation as shown in the following figure: In our toy puzzle, we need to put in pegs into these

A

B C

circles. The rule is that on any two adjacent circles joined by lines, we are not allowed to put pegs on both.
What is the maximum number of pegs we can put in?

If you have understood what the question is asking, then you immediately know the answer: it is one.
We can put one peg. And we cannot put in two pegs. But pause for a minute and ask yourself: why? What
is the proof that we cannot put two pegs in? Indeed one can make an argument in English – all pairs are
adjacent, and therefore of you put two pegs, the pair of pegs you put on are adjacent and thus violates the
rule. But, and this is important, English is just a medium for us humans to talk and understand; we share
a common context which allows us to comprehend and be convinced of this reasoning. But how do we
convince a computer? How does a computer come up with a proof? This is where logic will help us.

Remark: Before I embark upon this, I want to impress another fact on you. Note what we are trying
to show – we are trying to show no matter how you put two pegs, we will violate some rule. This ruling
out of all possible answers is actually a highly non-trivial problem in general. Not here, because there
are only 3 circles and 2 pegs. But in general it is. More on this later.

The main idea is to convert the peg-placing problem into a question of satisfiability/unsatisfiability of
some Boolean formula. To this end, let is introduce some Boolean variables. Namely,

a ∶ This is true if a peg is placed in circle A.

b ∶ This is true if a peg is placed in circle B.

c ∶ This is true if a peg is placed in circle C.

Note that any placement of pegs assigns a truth value to the three variables, and contrapositively, every
truth value assignment can be read off as a peg placement in the circle. Convince yourself of this fact before
moving on.

Now, we introduce formulae (the jargon often used is clauses) for each rule we have. For instance, we have
the rule that A gets a peg, then neither B nor C gets a peg. As a formula this is encoded as

a⇒ (¬b ∧ ¬c)

1



If there is a peg placement that satisfies the rule, then the above formula (clause) evaluates to true. There
are two more rules (for circles B and circles C). Namely,

b⇒ (¬c ∧ ¬a) and c⇒ (¬a ∧ ¬b)

A valid peg placement is one that satisfies all these rules. Therefore, a valid peg placement must assign
truth values which satisfy the following formula

(a⇒ (¬b ∧ ¬c) ) ∧ (b⇒ (¬c ∧ ¬a) ) ∧ (c⇒ (¬a ∧ ¬b) )

Indeed, a, b, c all set to false is a satisfying assignment to the above formula (the formula evaluates to true);
indeed, putting no pegs anywhere satisfies all conditions.

With me so far? Good. Now let us come to the number. How do we encode the fact that we are putting
in (at least) 2 pegs? Well two of a, b or c must be set to true. This is equivalent to saying the following
formula must evaluate to true.

((a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c))

Therefore, if there is a peg placement of (at least) 2 pegs which satisfies all the rules, then we must have
a satisfying formula to the following composite formula (the AND of the above two formulae):

φ ∶= (a⇒ (¬b ∧ ¬c) ) ∧ (b⇒ (¬c ∧ ¬a) ) ∧ (c⇒ (¬a ∧ ¬b) ) ∧ ((a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c))

Furthermore, any satisfying formula of φ can lead to a valid peg placement of (at least) 2 pegs.
Therefore, to prove that one cannot put 2 pegs in the above toy game, one only needs to show

φ is unsatisfiable.

Exercise: Using the logical equivalences done in class, show indeed that φ is unsatisfiable.

Great. But what’s the big deal of solving this trivial toy problem in such a roundabout way. The point is
that this roundabout way of creating φ is absolutely mechanical. Instead of a triangle, suppose I had a square
and the rules were the same. How many pegs can you put in then? How about a pentagon? Or some other
graph? While as humans we would have to come up with possibly different methods of arguing, the above
method can be mechanized to produce a formula for any figure. Furthermore, one can then use the logical
equivalences (which also is pretty mechanical), to prove the formula is unsatisfiable. Or one can use some
existing code out there (yes, believe it ot not, it’s a pretty huge business – checking if formula are satisfiable
or not.) The point is, that logic can allow mechanical ways of proving theorems. And indeed, there are some
theorems out there for which this1 approach is the only way we know how to prove them.

Exercise: To see if you have understood the above method, try to mimic the same thing for the square.

1By this, I don’t mean only using just the operations we did, but similar approach

2


