
CS30 (Discrete Math in CS), Summer 2021 : Lecture 6
Topic: Principle of Mathematical Induction

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.
Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

• Formal Setting.
Mathematical Induction is used to prove theorems of the form ∀n ∈ N ∶ P (n) where P is some
predicate with the natural numbers as the domain of discourse. Formally, it is stated as follows

(P (1) ∧ (∀k ∈ N ∶ P (k) ⇒ P (k + 1)) ) ⇒ (∀n ∈ N ∶ P (n)) (PMI)

In plain English, it asserts that to prove the statement “P (n) is true for all n ∈ N.”, it suffices to prove

– The Base Case:(often easy) Prove that P (1) is true; and
– The Inductive Case:(the meat!) For any natural number k, if P (k) is true, then prove that

P (k + 1) is true.

In the inductive case, the assumption that “P (k) is true” is called the Induction Hypothesis.

• Arithmetic Series

Theorem 1. For all positive integers n, ∑n
i=1 i = n(n + 1)/2

The predicate P (n) takes the value true if∑n
i=1 i = n(n+1)/2 and false otherwise. Theorem 1 asserts

that P (n) is true for all natural numbers.

Proof. To prove ∀n ∈ N ∶ P (n), the principle of mathematical induction (or simple induction, hence-
forth) asks us to check/prove the following.

Base Case: Let us verify that P (1) is true. Indeed, ∑1
i=1 i = 1 and 1(1+1)

2 = 1, and thus P (1) is true.

Inductive Case: Fix any natural number k. The induction hypothesis is that P (k) is true. We need
to prove P (k + 1) is true.

P (k) is true implies
k

∑
i=1

i = k(k + 1)
2

(Induction Hypothesis)

To prove P (k + 1) is true, that is, we need to show

k+1

∑
i=1

i = (k + 1)(k + 2)
2

(Need to Show)

We establish this by noting that the LHS of (Need to Show) is

k+1

∑
i=1

i =
k

∑
i=1

i + (k + 1) = k(k + 1)
2

+ (k + 1) = (k + 1) ⋅ (k
2
+ 1) = (k + 1)(k + 2)

2

where in the second inequality we have used the (Induction Hypothesis). Thus, we have established
(Need to Show), and thus ∀n ∈ N ∶ P (n) follows from induction.
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Exercise: Using induction, prove∑n
i=0 a

i = an+1−1
a−1 for any integer a > 1 and non-negative integer

n.

• A Divisibility Fact. We now prove the following fact by induction.

Theorem 2. For all n ∈ N, 3 divides n3 − n.

Proof. Let P (n) be the predicate representing the truth value of the statement given in the theorem
for a fixed natural number n. We proceed to prove ∀n ∈ N ∶ P (n) by induction.

Base Case: Let us verify P (1). We need to verify that 3 divides 13 − 1 = 0. Indeed, 3 times 0 is 0.

Inductive Case: Let us now assume for a fixed k ∈ N that P (k) is true. That is, 3 divides k3 − k. We
need to show P (k + 1) is true, that is, 3 divides (k + 1)3 − (k + 1). To do so, we expand (k + 1)3, to
get

(k + 1)3 − (k + 1) = (k3 + 3k2 + 3k + 1) − (k + 1) = (k3 − k) + 3(k2 + k)
3(k2 + k) is divisible by 3, and by the induction hypothesis (that is, P (k) is true), k3 − k is divisible
by 3. Therefore, (k + 1)3 − (k + 1) is divisible by 3. That is, P (k + 1) is true. By the principle of
mathematical induction, P (n) is true for all n ∈ N.

Exercise: Does 4 divide n4 − n for all non-negative integers n? Mimic the above proof.

• Another Divisibility Fact. We now prove the following fact by induction.

Theorem 3. For all n ∈ N, 7 divides 32n − 2n.

Proof. Let P (n) be the predicate representing the truth value of the statement given in the theorem
for a fixed natural number n. We proceed to prove ∀n ∈ N ∶ P (n) by induction.

Base Case: Let us verify P (1). We need to verify that 7 divides 32−21 = 7. Indeed it does. Therefore
P (1) is true.

Inductive Case: Let us now assume for a fixed k ∈ N that P (k) is true. That is, 7 divides 32k − 2k.
We need to show P (k + 1) is true, that is, 7 divides 32(k+1) − 2(k+1). Indeed observe,

32(k+1) − 2(k+1) = 32 ⋅ 32k − 2 ⋅ 2k

= 9 ⋅ 32k − 2 ⋅ 2k

= 9 ⋅ 32k − 9 ⋅ 2k + 9 ⋅ 2k − 2 ⋅ 2k (1)

= 9 ⋅ (32k − 2k) + 7 ⋅ 2k (2)

7 divides 32k − 2k, by the induction hypothesis. 7 clearly divides 7 ⋅ 2k. Therefore, 7 divides 32(k+1) −
2k+1. That is, P (k+1) is true. By the principle of mathematical induction, P (n) is true for all n ∈ N.

This proof was (slightly) tricky. Line 3 is where the trick was where we subtracted and added 9 ⋅ 2k.
Why did we do that? Well, we knew something about 32k − 2k, but when we expanded out we got
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9 ⋅32k −2 ⋅2k. If the “coefficients” of 32k and 2k were same we would be done (but it isn’t), so we just
added and subtracted so that the coefficients of one became the same. The other we had an “happy
accident” (of 9 − 2 = 7). Indeed, the person who devised this theorem (in this case, me) probably
worked backwards to come up with the statement.

Exercise: Can you come up with statements like above? Can you guess which number will
always divide 43n − 32n for all natural numbers n? After guessing, can you prove that guess
using induction.

Remark: Sometimes, the induction principle may look as follows: (a) The base case may involve
proving P (1), P (2), . . . , P (c) for some finite c, and (b) The inductive case may be possible only
for numbers k ≥ c. Note this is also perfectly OK to establish ∀n ∶ P (n). We will see such an
example in class and problem sets.
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Answers to Exercises.

• Exercise: Using induction, prove∑n
i=0 a

i = an+1−1
a−1 for any integer a > 1 and non-negative integer

n.

Proof. Fix any real a > 1. Let P (n) be the predicate which takes the value true if ∑n
i=0 a

i = an+1−1
a−1 .

We need to prove ∀n ∈ N ∪ {0} ∶ P (n). We proceed by inductions.

Base Case. We need to prove P (0) is true. That is, ∑0
i=0 a

i = a−1
a−1 . Indeed, both LHS and RHS are 1.

Inductive Case. Fix k ≥ 0 and suppose P (k) is true. That is, ∑k
i=0 a

i = ak+1−1
a−1 . We need to prove

P (k + 1) is true.

Now note,

k+1

∑
i=0

ai = ak+1 +
k

∑
i=0

ai =®
P (k)

ak+1 + ak+1 − 1

a − 1
=®

algebra

(ak+2 − ak+1) + (ak+1 − 1)
a − 1

And now we see that the RHS is ak+2−1
a−1 , thereby establishing P (k+1). And thus, we have proved the

statement by induction.

• Exercise: Does 4 divide n4 − n for all non-negative integers n? Mimic the above proof.

Actually, 4 does not divide all n4 − n. Rather than giving you a counterexample, let me actually take
you down a “proof”, which will fail and thus give us a counter example.

“Proof” Let P (n) be the predicate representing the truth value of the statement given in the theorem
for a fixed natural number n. We proceed to prove ∀n ∈ N ∶ P (n) by induction.

Base Case: Let us verify P (1). We need to verify that 4 divides 14 − 1 = 0. Indeed, 4 times 0 is 0.

Inductive Case: Let us now assume for a fixed k ∈ N that P (k) is true. That is, 4 divides k4 − k. We
need to show P (k + 1) is true, that is, 4 divides (k + 1)4 − (k + 1). To do so, we expand (k + 1)4, to
get

(k + 1)4 − (k + 1) = (k4 + 4k3 + 6k2 + 4k + 1) − (k + 1) = (k4 − k) + 4(k3 + k) + 6k2

And now we see our problem. To assert 4 divides (k + 1)4 − (k + 1), we see that 4 must divide 6k2.
This is because 4 does divide k4 − k (by induction hypothesis) and 4 divides 4(k3 + k). But does 4
divide 6k2 always? No! Not when k = 1. And so, it suggests for k = 1, P (k + 1) may not be true.
That is P (2) may not be true.

Indeed, 4 does not divide 24 − 2 = 14. Ta da!

• Exercise: Can you come up with statements like above? Can you guess which number will
always divide 43n − 32n for all natural numbers n? After guessing, can you prove that guess
using induction.

Did you guess? It’s 55 = 43 − 32.
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Proof. Let P (n) be the predicate representing the truth value of the statement given in the theorem
for a fixed natural number n. We proceed to prove ∀n ∈ N ∶ P (n) by induction.

Base Case: Let us verify P (1). We need to verify that 55 divides 43 − 32 = 55. Indeed it does.
Therefore P (1) is true.

Inductive Case: Let us now assume for a fixed k ∈ N that P (k) is true. That is, 55 divides 43k − 32k.
We need to show P (k + 1) is true, that is, 55 divides 43(k+1) − 32(k+1). Indeed observe,

43(k+1) − 32(k+1) = 43 ⋅ 43k − 32 ⋅ 32k

= 64 ⋅ 43k − 9 ⋅ 32k

= 64 ⋅ 43k − 64 ⋅ 32k + 64 ⋅ 32k − 9 ⋅ 32k (3)

= 64 ⋅ (43k − 32k) + 55 ⋅ 32k (4)

55 divides 43k − 32k, by the induction hypothesis. 55 clearly divides 55 ⋅ 32k. Therefore, 55 divides
43(k+1) − 32(k+1). That is, P (k + 1) is true. By the principle of mathematical induction, P (n) is true
for all n ∈ N.
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