What should I know before taking CS 30

- Boolean Variables. Boolean variables or simply Booleans are the most basic unit of data: the bit. The bit takes two values: 1 or "True", and 0 or "False".
- Numbers and Arithmetic. There are many types of numbers: natural/whole numbers $\{0,1,2,3, \ldots$,$\} , integers \{\ldots,-2,-1,0,1,2, \ldots\}$, which also include negative numbers, rational numbers, which are of the form p / q where both p and q are integers, and real numbers which can represented on the number line can be approximately represented by decimals.
- Arithmetic. Any two numbers can be added, subtracted, multiplied, and divided. Rationals are closed under these operations, that is, the sum/difference/product/ratio of any two rationals is rational. This is not true for integers. For instance, 2 divided by 4 is not an integer.
- Associativity and Comuutativity. Addition and Multiplication are associative and commutative. That is, $(a+b)+c$ is the same as $a+(b+c)$ and this is succinctly written as $a+b+c$. Similarly, $(a \cdot b) \cdot c=a \cdot(b \cdot c)=a \cdot b \cdot c$.
This is not true for subtraction. $(a-b)-c$ is not the same as $a-(b-c)$. Indeed, the latter is $(a-b)+c$.
- Multiplication distributes over addition and subtraction. For any three numbers, $a \cdot(b+c)$ equals $a \cdot b+a \cdot c$. Similarly, $a \cdot(b-c)=a \cdot b-a \cdot c$.
- Prime and Composite Numbers. A positive number p is prime if the only numbers dividing it (that is, leaving 0 remainder) are 1 and p. Otherwise, the number is composite. The only exception to the rule is 1 which is neither prime nor composite. For instance, 17 is a prime, but $323=17 \times 19$ is not.
- Floors and Ceilings. Given any real number x, the floor $\lfloor x\rfloor$ is the largest integer smaller than or equal to x. So, $\lfloor 2\rfloor=2$, and $\lfloor 1.5\rfloor=1$, and $\lfloor-2.7\rfloor=-3$. Similarly, the ceiling $\lceil x\rceil$ is the smallest integer larger than or equal to x. So, $\lceil 2\rceil=2$ and $\lceil 1.5\rceil=2$ and $\lceil-2.7\rceil=-2$.
- Exponentiating. Given any positive integer n and any real x, the number x^{n} is a shorthand for $x \cdot x \cdot x \cdots x$, where x is multiplied with itself n times. So, $3^{2}=9$ and $(1.5)^{2}=2.25$ and $(-1)^{3}=-1$.
The number x^{0} is defined to be 1 for any x. For any negative number $y=-z$, we define $x^{y}=x^{-z}:=$ $1 / x^{z}$.
Some properties of exponentials: For any reals x, y and numbers a, b, we have

1. $x^{a+b}=x^{a} \cdot x^{b}$
2. $(x y)^{a}=x^{a} \cdot y^{a}$
3. $\left(x^{a}\right)^{b}=x^{a b}$

- Logarithms. The logarithm of a positive number a to the positive base $b \neq 1$, denoted as $\log _{b} a$ is the number ℓ such that $b^{\ell}=a$. Thus, $\log _{3} 81=4$ (since $3^{4}=81$) and $\log _{4 / 3}(16 / 9)=2$ (since $\left.(4 / 3)^{2}=16 / 9\right)$, and $\log _{\sqrt{2}} 16=4\left(\right.$ since $\left.(\sqrt{2})^{8}=16\right)$.
Some properties of logarithms: These properties follow by using the properties of exponential and the definition of logarithms

1. $\log _{b} 1=0$ for all $b>0$.
2. $\log _{b}(x y)=\log _{b} x+\log _{b} y$ for all $b, x, y>0$.
3. $\log _{b}\left(x^{y}\right)=y \log _{b} x$ for all $b, x, y>0$.
4. $\log _{b} x=\frac{\log _{c} x}{\log _{c} b}$.

- Basic Formulae. You should be able to deduce the following

1. For any two numbers, $(a+b)^{2}=a^{2}+2 a b+b^{2}$
2. For any two numbers, $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
3. For any three numbers, $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a)$

- Polynomials. A polynomial is a formula of the form $p(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0}$. x is called the variable. The degree of a polynomial is the largest power of x which participates in the polynomial. In the above example, this is d. The constants $a_{0}, a_{1}, \ldots, a_{d}$ are the coefficients of the polynomial.
For instance, $p(x)=x^{2}+2 x+1$ is a polynomial, and so is $q(x)=5 x^{3}-7 x+4$. The degree of $p(x)$ is 2 and its coefficients are $1,2,1$, while the degree of $q(x)$ is 3 and its coefficients are $5,0,-7,4$.

You should be able to solve these problems reasonably quickly. If not, come talk to me ASAP.

- What is the value of (a) $\lfloor 2.5\rfloor+\lceil 3.75\rceil$? (b) $(\lfloor\pi\rfloor)^{[\pi\rceil}$?
- Are $1+\lfloor x\rfloor$ and $\lfloor 1+x\rfloor$ always equal? Are $\lceil\lfloor x\rfloor\rceil$ and $\lfloor\lfloor x\rfloor\rfloor$ always equal?
- If x and y are rational numbers, are $x+y, x-y$, and $x \cdot y$ always rational? How about x / y ?
- Which is bigger 3^{10} or 10^{3} ?
- What is the value of (a) $\log _{1 / 8} 2$? (b) $\log _{2} 16$?
- Which is bigger, $\log _{10} 17$ or $\log _{17} 10$?

