CS30 (Discrete Math in CS), Summer 2021 : Lecture 2

Topic: Functions
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.
Please discuss in Piazzalemail errors to deeparnab@dartmouth.edu

- Definition. A function is a mapping from one set to another. The first set is called the domain of the function, and the second set is called the co-domain. For every element in the domain, a function assigns a unique element in the co-domain.
Notationally, this is represented as

$$
f: A \rightarrow B
$$

where A is the set indicating the domain $\operatorname{dom}(f)$, and B is the set indicating the co-domain codom (f). For every $a \in A$, the function maps the value of $a \mapsto f(a)$ where $f(a) \in B$.
The range of the function is the subset of the co-domain which are actually mapped to. That is, $b \in B$ is in the range if and only if there is some element $a \in A$ such that $f(a)=b$. The range can also be written in the set-builder notation as

$$
\operatorname{range}(f):=\{f(a): a \in A\}
$$

Remark: For any function f with finite domains and ranges, we have $|\operatorname{range}(f)| \leq|\operatorname{dom}(f)|$

- An Example. Suppose

$$
A=\{1,2,3\}, \text { and } B=\{5,6\} \text {, then the map } f(1)=5, f(2)=5, f(3)=6 \text { is a valid function. }
$$

A is the domain. B is the co-domain. In this example, B also happens to be the range.

- The Identity Function. When the domain is the same as the co-domain, the idenitity function id : $A \rightarrow A$ maps $a \in A$ to $a \mapsto a$.

- More Examples.

- Usually (say in calculus) a function is described as a formula like $f(x)=x^{2}$. Henceforth, whenever you see a function ask your self how does it map to the above definition. In this example, this is as follows.
the domain is \mathbb{R}, the set of real numbers, and so is the co-domain. The map is $x \mapsto x^{2}-$ check both are real numbers. The range of the function is the set of non-negative real numbers (sometimes denoted as \mathbb{R}_{+}).
- $f(x)=\sin x$ is a function whose domain is \mathbb{R} and the range is the interval $[-1,1]$.
- A (deterministic) computer program/algorithm is also a function; its domain is the set of possible inputs and its range is the set of possible outputs.

Remark: How about the function $f(x)=\sqrt{x}$? Is this a function? When you think about it, you see some issues if we don't define the domain and co-domain. For instance, if the domain contains negative numbers, then what is $\sqrt{-1}$? Ok, so perhaps the domain is all positive real numbers. However, we also have a problem with $\sqrt{4}-$ is it mapping to +2 or -2 ? Note it can only map to a unique number. This can be resolved by stating the domain and co-domain are both non-negative reals, and the $x \mapsto \sqrt{x}$ goes to the positive root.

Exercise: Given a set $A=\{1,2,3\}$ and $B=\{4,5,6\}$, describe a function $f: A \rightarrow B$ whose range is $\{5\}$, and describe a function g whose range is $\{4,6\}$. Just to get a feel, how many functions can you describe of the first form (whose range is $\{5\}$), and how many functions can you describe of the second form?

- Sur-, In-, Bi- jective functions. A function $f: A \rightarrow B$ is
- surjective, if the range is the same as the co-domain. That is, for every element $b \in B$ there exists some $a \in A$ such that $f(a)=b$. Such functions are also called onto functions.
For example, if $A=\{1,2,3\}$ and $B=\{5,6\}$, and consider the function $f: A \rightarrow B$ with $f(1)=5, f(2)=5$, and $f(3)=6$. Then, f is surjective. This is because for $5 \in B$ there is $1 \in A$ such that $f(1)=5$ and for $6 \in B$ there is a $3 \in A$ such that $f(3)=6$.

Remark: If A and B are finite sets, and $f: A \rightarrow B$ is a surjective function, then $|B| \leq|A|$?

- injective, if there are no collisions. That is, for any two elements $a \neq a^{\prime} \in A$, we have $f(a) \neq$ $f\left(a^{\prime}\right)$. Such functions are also called one-to-one functions.
For example, if $A=\{1,2,3\}$ and $B=\{5,6,7,8\}$, and consider the function $f: A \rightarrow B$ with $f(1)=5, f(2)=6$, and $f(3)=8$. Then, f is injective. This is because $f(1), f(2), f(3)$ are all distinct numbers.

Remark: If A and B are finite sets, and $f: A \rightarrow B$ is an injective function, then $|A|=$ \mid range $(f) \mid$. Thus, $|A| \leq|B|$.

Injective functions have inverses. Formally, given any injective function $f: A \rightarrow B$, we can define a function f^{-1} : range $(f) \rightarrow A$ as follows

$$
f^{-1}(b)=a \quad \text { where } a \text { is the unique } a \in A \text { with } f(a)=b
$$

- bijective, if the function is both surjective and injective.

For example, if $A=\{1,2,3,4\}$ and $B=\{2,4,6,8\}$, then the function $f(x)=2 x$ defined over the domain A and co-domain B is a bijective function. Can you see why?

Remark: If A and B are finite sets, and $f: A \rightarrow B$ is a bijective function, then $|B|=|A|$. We will see this useful fact many times in the combinatorics module.

- Composition of Functions. Given a function $f: A \rightarrow B$ and a function $g: B \rightarrow C$, one can define the composition of g and f, denoted as $g \circ f$ with domain A and co-domain C as follows:

$$
(g \circ f)(a)=g(f(a)) \quad \text { that is } \quad a \mapsto g(f(a))
$$

Note this is well defined since for every $a \in A, f(a) \in B$, and thus $g(f(a)) \in C$.
Examples

- Suppose $A=\{1,2,3\}$ and $B=\{5,6\}$ and $C=\{3,4\}$. Also suppose $f: A \rightarrow B$ is defined as $f(1)=5, f(2)=6$, and $f(3)=5$; and $g: B \rightarrow C$ is defined as $g(5)=3$ and $g(6)=4$, then the composed function is $(g \circ f)(1)=3,(g \circ f)(2)=4$, and $(g \circ f)(3)=3$.
- If $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$defined as $f(x)=x^{2}$ and $g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$defined as $g(x)=\sqrt{x}$ (as defined above), then (convince yourself) that $(g \circ f)(x)$ returns the absolute value of x.
- If $f: A \rightarrow B$ is a bijection, and $f^{-1}: B \rightarrow A$ is its inverse, convince yourself that $\left(f^{-1} \circ f\right):$ $A \rightarrow A$ is the id : $A \rightarrow A$ identity function.

Answers to exercises

- $f(1)=5, f(2)=5, f(3)=5$ is an example of $f: A \rightarrow B$ with range $\{5\}$. Similarly, $g(1)=4, g(2)=$ $4, g(3)=6$ is an example of a function $g: A \rightarrow B$ with range $\{4,6\}$. There is only one function of the first type. Of the second type there are more. For instanct $h(1)=4, h(2)=6, h(3)=6$ also has range $\{4,6\}$. Can you find one more? How many such functions are there?

