
CS49/249 (Randomized Algorithms), Spring 2021 : Lecture 26 + 27
Topic: k-means++

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.
Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

• Clustering Problems. In this lecture we will see the use of randomization for an approximation
algorithm in clustering. Clustering problems form a very important class of problems both in machine
learning where one clusters data to understand patterns, and also in operations research where they
appear as “facility location” problems which try to figure out where to open service facilities which
maximizes certain happiness of the clients they serve. There are gazillions of types of clustering
problems, and numerous kinds of algorithms to solve them (and just clustering would be a full term
course). In this lecture or two, we are going to look at a particular, but very widely used, formulation
and algorithm.

• The Setting. We assume P is a set of points in d-dimensional space, that is, Rd. We also assume we
are given a positive integer k. Our goal is to partition the point set into k parts. That is, we need to
find Π := (P1, P2, . . . , Pk) which minimizes a certain cost function. Our cost function is going to
be additive over the parts, that is, the cost of Π will be the sum of costs of the singleton cluster Pi,
1 ≤ i ≤ k. We now explain what is the cost of a single subset of points.

The k-means cost of any subset A ⊆ P is defined as follows: minx∈Rd

∑
p∈A ||p− x||22. That is, we

find the best center x, which can be any point in Rd (and not necessarily in P), that minimizes the
squared sum of Euclidean distances of every point in P to this center x. A priori, this itself may seem
like a difficult problem. This is where the particular choice of the objective function comes in (and
probably explains its popularity in practice): the point x is simply the average of the points in A.

Fact 1. For any subset A ⊆ Rd, the x ∈ Rd minimizing
∑

p∈A ||p− x||22 is p := 1
|A|
∑

p∈A p.

Exercise: Prove the above fact.

• Relaxed Triangle Inequality. Fact 1 notwithstanding, we are going to look at things a bit more ab-
stractly. We are going to assume the “distance/cost” between any two points p, q is some non-negative
quantity d(p, q). In the above setting, d(p, q) = ||p − q||22, the squared Euclidean distance. The only
property of these distances we will use is symmetry, that is d(p, q) = d(q, p) and the following relaxed
triangle inequality.

For any three points p, q, r, we have, d(p, r) ≤ 2 (d(p, q) + d(q, r)) (1)

We will not assume anything else, in particular, we will not assume Fact 1 for this exposition. As a
result, when we specify our solution Π = (P1, P2, . . . , Pk), for each Pi we will also specify the center
ai (which may not be in P). And once we do so, the cost of our solution will be

cost(Π) :=

k∑
i=1

cost(Pi; ai) where cost(Pi; ai) :=
∑
p∈Pi

d(p, ai)

1

• The Cluster Centers Suffice. In fact, the next observation is that one doesn’t need to specify the parts
Pi’s at all; just specifying the centers are enough. In particular, if we select C := {a1, . . . , ak} as our
potential centers, then that defines the parts Pi’s as well. Indeed, Pi ⊆ P will be the set of points p
such that d(p, ai) is at most d(p, aj) for any j 6= i. Indeed, this is an important notation we will use.

Definition 1. Given any subset C of centers, and any subset of points A ⊆ P , we define the cost of
connecting A to C as follows. First, for any point p we define

d(p, C) := min
c∈C

d(p, c) and cost(A;C) :=
∑
p∈A

d(p, C)

Given any subset of centers C, let Π be the partition of P defined by C. In particular, if C =
{a1, . . . , ak}, then Π = (P1, . . . , Pk) where Pi := {p ∈ P : d(p, ai) ≤ d(p, aj), ∀j ∈ [k]}. Then,
the clustering cost of the centers is

cost(Π) =

k∑
i=1

∑
p∈Pi

d(p, ai) =︸︷︷︸
convince yourself

cost(P ;C)

We will use Π∗ = (P ∗1 , . . . , P
∗
k) as the optimal clustering defined by the optimal cluster centers C∗.

• The k-means++ Algorithm. Without further ado, we discuss the simple k-means++ algorithm. It is
an importance sampling algorithm which is extremely easy to state and implement, but whose analysis
is (at least I find it so) a bit tricky.

The algorithm picks the k centers C in order. These centers, in fact, are a subset of the original
points itself. The first center c1 is picked uniformly at random among P , and C ← c1. Henceforth,
every point p ∈ P maintains d(p, C) as in Definition 1, and the next center is chosen with probability
proportional to d(p, C). The algorithm stops when k centers have been picked.

1: procedure k-MEANS++(P):. This is also called D2-sampling in the literature
2: C ← ∅.
3: Select c1 uniformly at random among the points in P .
4: for i = 2 to k do:
5: Select ci among P with probability proportional to d(p, C). More precisely,

For any p ∈ P , Pr[ci = p] =
d(p, C)

cost(P ;C)

6: Add C ← C ∪ {ci}.

Theorem 1 (D. Arthur, S. Vassilvitskii, 2007). The expected cost of the final set returned in an
O(log k) approximation. In particular,

Exp[cost(P ;C)] ≤ 16 · (1 + Hk)cost(Π∗)

where Hk is the kth Harmonic number.

2

• Baby Step 1 : Uniform Center in a Single Subset. The analysis follows in many steps. The first
observation is the following. Fix any subset A ⊆ P of the points. Let x be the point which minimizes∑

p∈A d(p, x). That is, x is the optimal choice of center for the subset A resulting in a clustering
cost of opt(A). Note that x may not lie in A at all. Indeed, when d(·, ·) is the squared Euclidean
distance, then Fact 1 tells us that x is the mean of A. Nevertheless, the following lemma states that if
we instead select a r uniformly at random from A as our center, then the expected cost of connecting
all the points in A to r is at most a 4-factor of opt(A).

Lemma 1. For any A ⊆ P , let r be a point uniformly drawn from A. Then,

Exp[cost(A; {r})] =
1

|A|
∑
r∈A

∑
p∈A

d(p, r) ≤ 4 · opt(A) := 4 · min
x∈Rd

∑
p∈A

d(p, x)

Proof. This is a simple consequence of the relaxed triangle inequality. Fix the optimal x which obtains
the cost opt(A). For any r and p, we get

d(p, r) ≤ 2 · (d(p, x) + d(x, r))

And thus,

Exp[cost(A; {r})] =
1

|A|
∑

p,r∈A×A
d(p, r)

≤ 2

|A|
∑

p,r∈A×A
(d(p, x) + d(x, r))

=
2

|A|
·

|A|
∑
p∈A

d(p, x)

︸ ︷︷ ︸
opt(A)

+|A|
∑
r∈A

d(r, x)︸ ︷︷ ︸
opt(A)

 = 4opt(A)

Why is the above lemma useful for analyzing k-means++? We will soon see. But qualitatively,
imagine a scenario where the clusters in Π∗ are “far apart”. So much so that once you select a center
c1 in P ∗1 say, the distances d(p, c1) ≈ 0 for p ∈ P ∗1 , and d(p, c1) ≈ M , for some large M , when
p /∈ P ∗1 . Then, the next center c2 will be roughly uniformly distributed among the points not in P ∗1 ;
one will almost surely not pick anything from P ∗1 , and the remaining points have roughly the same
distance to c1 and thus will be sampled roughly uniformly. And the above lemma states that in that
case the cost incurred is within a constant. The next lemma makes this rigorous.

• Baby Step 2 : Hitting a (Optimal) Cluster is Good. Suppose at some point of time we have picked
a collection of centers C. Fix a subset of points A ⊆ P . Now, we pick a new center c using the
importance sampling process, that is, with probability proportional to the distance to the current set
of centers C. And now condition on the event that c ∈ A. Note that c is not uniformly distributed

3

among A: it is more likely we will sample points which are farther from the set C. The next lemma
shows that nonetheless the expected cost of connecting A to C ∪{c} is≤ 16opt(A). In plain English,
for any subset of points A, if we ever pick a center in A, then in expectation, the connection costs of
the points in A is not too far from the optimal solution.

Lemma 2. Let C be an arbitrary collection of centers and let A be an arbitrary subset of P . Let
opt(A) := minx

∑
p∈A d(p, x). Let c be a point chosen from P such that Pr[c = p] = d(p,C)

cost(P ;C) .
Let E be the event {c ∈ A}. Then,

Exp[cost(A;C ∪ c) | E] ≤ 16opt(A)

Proof. The main observation in the proof is to show that conditioned on the event {c ∈ A}, the
distribution of c in A is, although not uniform, not “too far” from it. In particular, we claim

Claim 1. For any point r ∈ A, Pr[c = r | E] ≤ 2
|A| ·

(
cost(A;r)
cost(A;C) + 1

)
That is, if cost(A; r)� cost(A;C), then the distribution is close to being (semi)-uniform. Before we
prove the claim, let us see how it easily implies the lemma. Indeed,

Exp[cost(A;C ∪ c) | E] =
∑
r∈A

Pr[c = r | E] · cost(A;C ∪ r)

≤ 2

|A|
∑
r∈A

(
cost(A; r)

cost(A;C)
+ 1

)
· cost(A;C ∪ r) by Claim 1

≤ 4

|A|
∑
r∈A

cost(A; r) since cost(A;C ∪ r) ≤ min (cost(A; r), cost(A;C))

≤ 16opt(A) by Lemma 1

Proof of Claim 1. The probability that E occurs is Pr[E] =
∑

r∈A d(r,C)∑
p∈P d(p,C) = cost(A;C)

cost(P ;C) . Therefore,
conditioned on the event E , the probability that c is a particular point r ∈ A is simply the ratio of the
distance of r to C divided by the sum of distances of points only in A to C. That is,

Pr[c = r | E] =
d(r, C)/cost(P ;C)

cost(A;C)/cost(P ;C)
=

d(r, C)

cost(A;C)
(2)

Now, we notice the following. Fix any point p ∈ A. Then the relaxed triangle inequality gives us

d(r, C) ≤ 2 · (d(r, p) + d(p, C)) (3)

To see this, let z ∈ C be the one minimizing d(p, z), that is d(p, C) = d(p, z), and use d(r, C) ≤
d(r, z) ≤ 2 · (d(r, p) + d(p, z)). Next, we average (3) over all p ∈ A to give

d(r, C) ≤ 2

|A|
·

∑
p∈A

d(p, r)

︸ ︷︷ ︸
cost(A;r)

+
∑
p∈A

d(p, C)

︸ ︷︷ ︸
cost(A;C)

Substituting in (2) gives the claim.

4

• Main Workhorse : Managing Wastes and The Harmonic Sum. Let’s understand what Lemma 2
is telling us about the k-means++ algorithm. To this end, fix Π∗ = (P∗1, . . . , P ∗k). Let C :=
{c1, c2, . . . , ck} be the random centers picked by k-means++. From Lemma 2 we get that if P ∗i ∩C 6=
∅, then Exp[cost(P ∗i ;C)] = O(opt(P ∗i)). Therefore, if we were lucky and every part of Π∗ got
“hit” by the random C, then we would actually have an O(1)-approximation. This is what Lemma 2
is telling us. However, there is non-trivial chance that C “misses” quite a few of the P ∗i ’s. The
remaining analysis (cleverly) bounds the expected cost of such misses. Indeed, the exposition below
is heavily influenced by the analysis given by Sanjoy Dasgupta of UC San Diego in these lecture
notes.

• Intuition of the Charging Analysis. Before I jump into the details, let me give a cartoon sketch of the
argument that is to follow. For this, let me use the following figure.

1/6

1/6

We have k = 5 in this case, and the five blue-bordered circles in each row correspond to the 5 optimal
clusters. The five rows correspond to the five iterations of the k-means++ algorithm. In the first
iteration, we pick a center in the first ball, and we are happy. We are happy because the points in the
first circle can be accounted for (in expectation, up to a constant factor). In the next iteration, we pick
a center in the second ball, and we are happy again. In the third iteration, however, we pick a center
in an already picked ball. And now, we know for sure that at least one of the three remaining balls
will be “missed” by our final set C.

At this point, we pay a “penalty” which is represented by the green circle. Since we know that we
will miss one ball, we pay for right at this point. However, we do not know which ball will be missed.

5

https://cseweb.ucsd.edu/~dasgupta/291-geom/kmeans.pdf

So, we smear this penalty over all three balls, and pay a third of each. A little more precisely, for each
uncovered ball, we put one-third of the sum of the distances of its points to the current three centers
into the penalty kitty. In the figure, all these are illustrated to be the same, and for now, this is not a
bad image to keep in mind.

Here is the main analysis point: what is the probability that there was a miss in this third iteration?
Let’s bring in a little of notation. Suppose H was the sum of distances of points in the first two
“hit” clusters to the first two centers. Similarly, suppose U was the sum of distances of points in the
“uncovered” last three clusters. Then the probability that the third point is in one of the “hit” clusters
is precisely H

U+H ≤
H
U . And in that case, we put in 1

3 rd of the total sum of distances of points to
the three centers in the uncovered last three clusters into the kitty. But this sum is at most U as well.
Therefore, in expectation, the total amount of stuff we put in the kitty is ≤ H

U ·
U
3 ≤

H
3 .

Now, in the fourth iteration, we pick a point in the third cluster. Therefore, the third cluster is now
hit, and is now happy. We don’t need to pay any penalty for it. At this point, we move the penalty that
was charged to it (denoted by the green zone), and equally divide it among the remaining uncovered
clusters. In the case all the cluster “sizes” are the same, this doesn’t change the total penalty. However,
in the case of unequal “sizes” as well, because of our sampling process, this can only “help”. This
will be made formal soon, but for intuition, keep the equal sized balls picture in find. And in that case,
the two equal balls now pay 1/2 each.

Finally, in the last iteration there is another “miss”. This time around, we smear 1/2-the mass to the
two remaining balls. And now, we see that we pay for them both, which indeed we should since the
game is over. Again, the probability of the miss occurring is ≤ H

U , where of course the values of H
and U have changed. And the expected cost we pay is U

2 this time. Thus, in expectation in this round,
we pay U

2 .

Perhaps the reader can see where the “ln k” is coming from. If there are k iterations, in each iteration
there is a hit or a miss. The hits are good events, and the final hits will be bounded by Lemma 2 to
O(opt). The misses are bad events and generate penalty. But the expected penalty it generates in any
round t is ≤ H

k−t , where H is the expected cost of the “hit” clusters, which is O(opt) by Lemma 2.
Summing over all iterations gives us that the total penalties is O(Hk) · opt where Hk is the harmonic
sum.

• Detailed Analysis. The rigorous analysis goes through via a “potential” argument which formalizes
the notion of penalty. Let us start with some definitions. For iteration 1 ≤ t ≤ k, we use Ct to denote
the centers picked by the k-means++ algorithm at the end of the iteration. So, Ck is the final output
of the algorithm. We fix the optimum clustering Π∗ = (P∗1, . . . , P ∗k). We let opt := opt(Π∗) :=∑k

i=1 opt(P
∗
i) denote the cost of the optimum clustering. We wish to prove that Exp[cost(P ;Ck)] ≤

O(ln k)opt.

At the end of iteration t, we let Ht := {P ∗i : P ∗i ∩ Ct 6= ∅} denote the optimal clusters which have
been “hit” so far by the algorithm. We let Ut denote the remaining clusters which are “uncovered”.
So, |Ht|+ |Ut| = k. We also have, from Lemma 2, that

cost(Ht;Ct) :=
∑

Pi∈Ht

Exp[cost(Pi;Ct)] ≤ 16
∑

Pi∈Ht

opt(Pi) ≤ 16opt (4)

The main non-triviality in the analysis is hand cost(Ut;Ct) :=
∑

Pi∈Ut Exp[cost(Pi;Ct)]. To this
end, we define the following potential function. Let misst denote the number of “misses” we have

6

had so far. That is, the number of times Ct picks more than one element from the same P ∗i . Note that
misst = t− |Ht|. We define the potential function as

Φ(t) := misst ·
cost(Ut;Ct)

|Ut|
(5)

It is instructive to connect with the intuitive picture from the previous bullet point. Every time we
made a mistake, we paid a penalty which was the total cost of the so-far uncovered clusters smeared
equally over. The above potential is capturing that idea. Observe two things

Φ(0) = 0, because miss0 = 0 and Φ(k) = cost(Uk;Ck), because missk = |Uk|

We wish to prove that Exp[Φ(k)] is small. To show this, we will show that the increase in every
iteration is bounded in expectation.

• Let us consider the situation at the end of iteration t. In what follows, we will be implicitly condition-
ing all the random events that have occurred so far, and the expectation will be over the randomness
in the (t + 1)th iteration. We will upper bound Exp[Φ(t + 1) − Φ(t)]. To do so, we condition on
two disjoint events: Ehit, which occurs if ct+1 lies in a cluster in Ut, that is, ct+1 lies in an hitherto
uncovered cluster, and Emiss, which occurs if ct+1 lies in a cluster inHt.

First, we observe that

Pr[Emiss] =
cost(Ht;Ct)

cost(Ht;Ct) + cost(Ut;Ct)
≤ cost(Ht;Ct)

cost(Ut;Ct)
(6)

The following two lemmas establish upper bounds on the increase in the potential conditioned on
each event. We first complete the proof of Theorem 1 using these lemmas, and then we go on to prove
them.

Lemma 3. Exp[Φ(t + 1)− Φ(t) | Ehit] ≤ 0.

Going back to the intuitive picture, the above lemma corresponds to the case when we pick a center
which already had some “penalty” on it. This happened in the fourth row in the illustration above. At
that time, we redistributed the penalty on the remaining uncovered clusters. The above lemma says
that this redistribution can be done without increasing the total penalty.

Lemma 4. Exp[Φ(t + 1)− Φ(t) | Emiss] ≤ cost(Ut;Ct)
|Ut| .

Going back to the intuitive picture, the above lemma corresponds to the case that when we miss, the
expected increase in the potential can be “charged” to the cost of connecting the “hit” clusters divided
by the total number of uncovered clusters left.

• Proof of Theorem 1. The final cost Exp[cost(P ;Ck)] can be partitioned as

Exp[cost(P ;Ck)] = Exp[cost(Hk;Ck)] + Exp[cost(Uk;Ck)]

7

From (4), we know that Exp[cost(Hk;Ck)] ≤ 16opt. We also know that cost(Uk;Ck) = Φ(k).
From Lemma 3 and Lemma 4, we get that for any t,

Exp[Φ(t + 1)− Φ(t)] = Pr[Ehit] ·Exp[Φ(t + 1)− Φ(t) | Ehit] + Pr[Emiss] ·Exp[Φ(t + 1)− Φ(t) | Emiss]

≤ cost(Ht;Ct)

cost(Ut;Ct)
· cost(Ut;Ct)

|Ut|

=
cost(Ht;Ct)

|Ut|
≤︸︷︷︸

(4), |Ut|=k−|Ht|≥k−t

16opt

k − t
(7)

Therefore,

Exp[Φ(k)] = Exp[Φ(0)]︸ ︷︷ ︸
=0

+

k−1∑
t=0

Exp[Φ(t + 1)− Φ(t)] ≤ 16opt ·Hk

Therefore, we get Exp[cost(P ;Ck)] ≤ 16opt(1 + Hk).

• Proof of Lemma 3. When a hit occurs, the parameters change as follows: misst+1 = misst and
|Ut+1| = |Ut| − 1. Therefore,

Φ(t + 1)− Φ(t) = misst+1 ·
cost(Ut+1;Ct+1)

|Ut+1|
−misst ·

cost(Ut;Ct)

|Ut|

= misst ·
(
cost(Ut+1;Ct+1)

|Ut| − 1
− cost(Ut;Ct)

|Ut|

)
The lemma now follows from the following claim

Exp[cost(Ut+1;Ct+1) | Ut, Ct] ≤
(

1− 1

|Ut|

)
· cost(Ut;Ct) (8)

Let us now upper bound the expected “drop” in the cost when we open an uncovered cluster. Let
Ut := {Q1, Q2, . . . , Qr}. Conditioned on Ehit, the probability that Qj is “hit” is precisely cost(Qj ;Ct)

cost(Ut;Ct)
.

Therefore,

Exp[cost(Ut;Ct)− cost(Ut+1;Ct) | Ut, Ct] =
r∑

j=1

cost(Qj ;Ct)

cost(Ut;Ct)
· cost(Qj ;Ct) ≥

1

|Ut|
· cost(Ut;Ct)

where the inequality follows by the Cauchy-Schwarz/Jensen/however-you-think-of-it inequality: for

any non-negative xj’s,
∑r

j=1 x
2
j ≥ 1

r

(∑r
j=1 xj

)2
. Rearranging, we get

Exp[cost(Ut+1;Ct+1) | Ut, Ct] ≤ Exp[cost(Ut+1;Ct)] ≤
(

1− 1

|Ut|

)
· cost(Ut;Ct)

which establishes (8), and proves the lemma.

8

• Proof of Lemma 4. When a miss occurs, the parameters change as follows: misst+1 = misst + 1 and
|Ut+1| = |Ut|. Therefore,

Φ(t + 1)− Φ(t) = misst+1 ·
cost(Ut+1;Ct+1)

|Ut+1|
−misst ·

cost(Ut;Ct)

|Ut|

≤ (misst + 1) · cost(Ut;Ct)

|Ut|
−misst ·

cost(Ut;Ct)

|Ut|

=
cost(Ut;Ct)

|Ut|

where the inequality follows since opening more centers can only decrease cost.

9

