
CS49/249 (Randomized Algorithms), Spring 2021 : Lecture 25
Topic: Randomization for Approximate Optimization

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.
Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

• Approximation Algorithms. Randomization plays an extremely important role in the development
of approximation algorithms for NP-hard optimization problems. Since we cannot solve NP-hard
problems exactly, we often try to find fast algorithms to find solutions which are guaranteed to be
within some specified factor of the best solution. Formally, if our problem Π is a minimization prob-
lem, then an α-approximation algorithm (for α ≥ 1) takes input I ∈ Π and returns a solution whose
cost is cost(S) ≤ α · opt(I). Similarly, if our problem Π is a maximization probem, then an α-
approximation algorithm (for α ≥ 1) takes input I ∈ Π and returns a solution whose “profit” is
profit(S) ≥ 1

α · opt(I). When our algorithms are randomized, we let the left hand sides be replaced
by Exp[cost(S)] and Exp[profit(S)], respectively. In this lecture, we look at two basic examples of
use of randomization in the design of approximation algorithms.

• The Set Cover Problem. The set cover problem is a canonical problem arising is many situations.
There is an universe U of n elements. The input consists of m subsets of U namely S1, . . . , Sm.
Each set Si has a cost c(Si) or simply ci. The objective is to pick the minimum cost family of these
sets whose union contains all the elements. More precisely, the objective is to select A ⊆ [m] =
{1, 2, . . . ,m} such that

(a)
⋃
j∈A

Sj = U, and, (b)
∑
j∈A

c(Sj) is minimized

This problem is NP-hard, and generalizes the vertex-cover problem which you may have seen in your
undergraduate algorithms course. Indeed, you may have even seen this problem itself in your under-
graduate algorithms course, and in fact, seen that a “greedy algorithm” gives a good approximation
algorithm. Today we use randomization to see another algorithm. But before we do so, we introduce
the notion of linear programs.

• The Linear Program. One can express the algorithmic question mathematically as follows. Note
that our problem is to decide for every subset Sj whether to pick it in A or not. To that end, let us
denote this via a vector x ∈ {0, 1}m where the semantic is xj = 1 ⇔ j ∈ A. Then note, we want to
minimize the linear function f(x) =

∑
j∈[m] cjxj , where we have used the short-hand cj = c(Sj).

Of course we can’t choose any x ∈ {0, 1}m; we have to make sure that the coordinates that are set to 1
correspond to a covering solution. How would we do that? Turns out that this also a linear constraint
on the xj’s. Fix an element e ∈ U . What do we want? We want that at least one set Sj , j ∈ A should
contain this element. In other words, if we look at all the sets which contains this element e, then we
must pick at least one of these sets. That is, xj = 1 for at least one of these sets. Or, the sum of xj
among the j’s such that e ∈ Sj is at least 1. That is,

For all e ∈ U,
∑
j:e∈Sj

xj ≥ 1

1



Therefore, if we look at the following “program” or an optimization problem

P := min

m∑
j=1

cjxj : for all e ∈ U,
∑
j:e∈Sj

xj ≥ 1, x ∈ {0, 1}m

then, P is a lower bound on the optimum solution of the set-cover instance. For any set-cover solution,
we can get an x ∈ {0, 1}m which satisfies the constraints and whose f(x) equals the cost of the
solution. In fact, the value of P is equal to the optimum solution, as given any solution x ∈ {0, 1}m,
we can obtain a set-cover solution of the same cost. Do you see how?

What progress has been made? We have found a reformulation of the set-cover problem as an equiv-
alent algebraic optimization problem. But since set-cover is NP-hard, solving this algrebraic problem
is also NP-hard. The next fact is one of the most important algorithmic achievments. It says that
instead of x ∈ {0, 1}m, we has x ∈ [0, 1]m, then this algebraic problem is efficiently solvable! This
formulation is a linear program.

LP := min

m∑
j=1

cjxj : for all e ∈ U,
∑
j:e∈Sj

xj ≥ 1, x ∈ [0, 1]m

Theorem 1 (Linear Programming). The value LP can be obtained in polynomial time.

Also observe that LP ≤ P. This is simply because LP is minimizing over a larger domain. And thus,
LP is a lower bound on the optimum set cover solution. Now, however, a solution x of LP can’t
simply be ported back to a set cover solution. Indeed, we may get that in the solution to LP, the
value of x1 = 0.31. What does this even mean? Should we pick S1 in our solution, or not? At the
end, our algorithm must make this choice. And now, having done almost a full course in randomized
algorithms, you probably know the answer : x1 = 0.31 should probably be interpreted as “pick
S1 with probability 31%”. Indeed, our final solution will be something like this, and this style of
algorithm is called randomized rounding.

• Randomized Rounding.

1: procedure RANDOMIZED-ROUNDING(x ∈ [0, 1]m):
2: Select every j ∈ [m] into A independently with probability pj := min(1, 2 lnn · xj).

Theorem 2. The expected cost of the solution returned by randomized rounding is Exp[cost(A)] ≤
2 lnn · LP, and with probability ≥ 1− 1

n , it is a valid set cover.

Proof. The cost analysis is simply via linearity of expectation. Let Zj be the indicator event that
j ∈ A. Note, Exp[Zj ] = Pr[Zj = 1] ≤ 2 lnn · xj . Then,

Exp[cost(A)] = Exp[

m∑
j=1

cjZj ] =

m∑
j=1

cj Exp[Zj ] ≤ 2 lnn

n∑
j=1

cjxj ≤ 2 lnn · LP

2



Let us look at the event that A is not a set cover. Indeed, for any element e ∈ U , let Be be the event
e is not covered by the sets indexed by A. We want to upper bound Pr[∪e∈UBe] ≤

∑
e∈U Pr[Be], by

the union bound. To see an upper bound on the probability of Be, note

Pr[Be] =
∏
j:e∈Sj

Pr[j /∈ A]

=
∏
j:e∈Sj

(1− pj) ≤
∏
j:e∈Sj

(1− 2 lnnxj)

≤
∏
j:e∈Sj

e−2 lnn·xj = e
−2 lnn·

∑
j:e∈Sj

xj (1)

Now, we use the fact that the xj’s satisfy
∑

j:e∈Sj
xj ≥ 1, which plugging into (1) gives Pr[Be] ≤

e−2 lnn = 1
n2 . Therefore, Pr[B] ≤

∑
e∈U Pr[Be] ≤ 1

n .

3


