
CS 49/249: Randomized Algorithms (Spring 2021) Problem Set
This is an alive document which will refresh frequently. Check every weekend for newer problems.

Can be done in groups of size & 2.

Instructions

• Credit Statements: At the beginning of each problem you must write who all (including the teaching
staff) you discussed this problem set with. This is important. Even if you did not talk with anyone
about any of the problems, you need to mention “No one”. Without a credit statement, you may be
awarded 0 for the p-set.

• External Sources: You are not allowed to consult any sources other than the notes and the text-book.
Many of these problems have solutions out there on the web. Don’t go hunting for them. If you
stumble upon them, then cite it. Uncited solutions will be an honor code violation.

• Presentation: Your presentation should satisfy the following three C’s: they should be Correct, Clear,
Concise. Do not ramble. Ideally, I should be able to read and completely understand any answer to a
single problem in less than five minutes.

• LaTeX: You have to use LaTeX. Style files will be provided in Canvas. The main reason is that I will
often choose the best solution among you all as official solutions.

• This Problem Set is worth 30% of your total points. I will usually post 4-5 problems per week. To get
these, you must complete at least 60% of the (“normal” non-Y) problems. Please hand in work often
to obtain feedback from the teaching staff.

• Some of the problems are possibly challenging (some of them I don’t know the answer to myself)
and are marked with Y . Doing these will count towards your “engagement” in the course. Instructive
problems which teach you a concept/algorithm are marked with ¸.

• News (May 8th): Some problems have been greyed out as their solutions have been released. Do not
attempt them anymore.
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Week 1

Problem 1 (Checking Matrix Multiplication). ¸

Let A,B,C be three n � n matrices. You need to decide if C � AB where AB is the standard matrix
multiplication. That is, AB is an n � n matrix M whose �i, j�th entry is Mij � <n

k�1AikBkj . In other
words, Mij is the dot product of the ith row of A and jth column of B. The naive way to multiply two n�n
matrix takes O�n3� time, and to date no algorithm faster than O�n2.37� is known.

Design and analyze a Monte-Carlo randomized algorithm to check if AB � C which runs in O�n2� time.

Problem 2 (The Schwartz-Zippel Lemma). Y ¸

Let p�x1, x2, . . . , xn� be a non-zero polynomial on n variables with total degree d. So, for instance the
polynomial x21x

2
2 � x

2
3 � x1x2x3 is a polynomial on 3 variables with total degree 4. Let S be an arbitrary

collection of numbers. Let r1, r2, . . . rn be n numbers chosen from S independently and uniformly at
random. Then, prove

Pr�p�r1, r2, . . . , rn� � 0� & d¶S¶
Here is a skeleton of the proof.

a. First establish the case for n � 1.

b. Next, write p�x1, . . . , xn� as xk1Qk�x2, . . . , xn� � x
k�1
2 Qk�1�x2, . . . , xn� � � � Q0�x2, . . . , xn�.

That is, we pick out the powers of x1 separately. k is the largest power of x1 appearing in p.

• What is the total degree of Qk? What does induction tell you about Pr�Qk�r2, . . . , rn� � 0�?
• Finish up the proof using induction.

Remark: This lemma gives a fast randomized algorithm to check if a polynomial, which we can only
access via an evaluation oracle, is equivalent to the 0 polynomial or not : simply evaluate the polyno-
mial on random points picked from a modestly sized set. We do not know of any efficient deterministic
algorithm for this : it is a fundamental open question in the theory of computation!

Problem 3 (Quick Select).
In this problem we look at an algorithm to find the kth smallest number of an unsorted array A�1 � n�.

k could be as large as n©2. We are interested in the number of comparisons made by the algorithm. Before
reading further, answer this: what’s the algorithm for this problem you know right now which makes the
smallest number of comparisons?
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1: procedure QUICKSELECT(A�1 � n�, k):
2: V Returns the kth smallest number in A�1 � n�.
3: if k � 1 then:
4: Find the minimum of A�1 � n� making & n comparisons.
5: while true do:
6: q � RANDOM(A�1 � n�) V A random element of A�1 � n�

7: �A1, A2� = PIVOT�A�1 � n�, q�V A1 is an array of all elements in A�1 � n� strictly smaller than
q; A2 are the rest.

8: if n©3 & len�A1� & 2n©3 then:
9: break the While Loop

10: V Convince yourself : at this point both A1 and A2 have length in �n©3, 2n©3�
11: if len�A1� ' k then:
12: QUICKSELECT�A1, k�
13: else:
14: QUICKSELECT�A2, k � len�A1��

a. On taking input an array A�1 � n� and k % 1, what is the expected number of comparisons made in
the While Loop (Lines: 5-9). You can give as tight an upper bound as you can : we are interested in
the coefficient of n.

b. Suppose T �n� is the expected worst case number of comparisons QUICKSELECT makes on any array
of length & n. That is,

T �n� �� max
A�1�n�

Exp�TQ�A��
where TQ�A� is the number of comparisons on array A. Write the recurrence inequality which gives
an upper bound on T �n� in terms of T �m� for some m which is significantly smaller than n. Solve
the recurrence and write T �n�. We are interested in the coefficient of n, so Big-Oh notation won’t do.

Problem 4 (A question of expectation). Y
Remember longest increasing subsequences? Given an array A�1 � n�, an increasing subsequence of

length k is a collection 1 & i1 $ i2 $ � $ ik & n such that A�i1� & A�i2� & � & A�ik�. The LIS of
A�1 � n� is the length of the longest increasing subsequence.

Now, let A�1 � n� be a random permutation of the numbers r1, 2, . . . , nx. Prove that Exp�LIS�A�1 �
n��� � Θ�Ón�. Note there are two things to show, and both are interesting.

Problem 5 (Number of Approximate Minimum Cuts). ¸
In an undirected multigraph G � �V,E�, a cut S N V is an α-approximate minimum cut, for some

integer α ' 1, if ¶∂S¶ & α � C where C is the value of the minimum cut in G. Prove that the number of
α-approximate minimum cuts is O�n2α�.
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Week 2

Problem 6 (A curious “boosting” situation).
Let N be a statistic for which someone constructs an estimate test with the following curious property:

Pr�test & �1 � ε�N� & 0.01 but Pr�test ' �1 � ε�N� & 0.9

That is, the probability that test is an “ε-under-rstimate” is small, less than 1%, but the probability that test is
an “ε-over-estimate” is only less than 90%. Note, we are not insisting test is an unbiased estimator, nor are
we saying anything about its variance.

Show how to obtain an �ε, δ�-multiplicative estimator est using independent samples of test. How many
samples do you need (your answer should be a function of δ. Answer in Big-Oh fine)?

Problem 7. ¸
You have a fair coin which tosses heads or tails with probability 1©2-each. n is a parameter. You keep

tossing this coin stopping till you see n heads. Let Z be the total number of tosses you have done so far.
This is a random variable.

a. What is Exp�Z�?
b. For any ε " �0, 1�, what is the best upper bound on the probability Pr�Z � �1 � ε�Exp�Z��?

Express your answer as a function of n and ε.

Problem 8 (A question of fairness).
Let U be a universe of n elements, where n is even. Let A N U be colored azure and the remaining

elements B �� U ¯A be colored blue. Assume ¶A¶ � ¶B¶ � n
2

. Sample a random subset R of U as follows:
independently, for every element i " U , you add it to R with probability s

n
. Define the “unfairness” of your

sample R defined as ∆R ��
»»»»»» ¶R = A¶ � ¶R = B¶ »»»»»» to be the difference in the number of azure and blue

elements in your sample. For what value of t (as a function of s, δ, and n), can you prove that the probability
Pr�∆R ' t� becomes smaller than δ? Big-Oh notation is fine.

Problem 9 (Randomized Selection).
To see if you have understood the RANDOMIZED-MEDIAN algorithm, show how you will modify the

algorithm and analysis to find the kth smallest item in A. That is, the item x with rankA�x� � k. Your
algorithm should abort with probability & n�O�1�, and should make & n � k � o�n� comparisons.

Problem 10 (QuickSort Analysis). Y
Prove that QUICKSORT, as we saw in Lecture 2, actually satisfies the following: it makes O�kn log n�

comparisons with probability ' 1 � 1
nk . Here is a skeleton of an argument which may help.

Fix an element a " A and let Ta be the number of comparisons made by QUICKSORT where one of the
entries is a. The total number of comparisons is<a"A Ta.
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a. Let P1, P2, . . . , PT be the arrays such that (a) a " Pt, and (b) QUICKSORT�Pt� is called. So, P1 � A
the original array. P2 is either A1 or A3 (depending on the pivot q), or there is no P2 if q � a in which
case a " A2. Note that Pt’s and T are random variables.

Express Ta as a function of these Pt’s and T .

b. For 1 & t & T , define a random variable Yt as follows. Note that QUICKSORT breaks the array A into
three sub-arrays A1, A2, A3. We set Yt � 1 if q � a or if ¶A¶

3
& ¶A1¶ & 2¶A¶

3
. Note that Yt � 1 implies

t � T or ¶Pt�1¶ & 2¶Pt¶

3
.

What is Pr�Yt � 1�? Are these independent random variables?

c. Consider the chain Y1, Y2, . . . , YT : again remember T is a random variable. How many of these Yt’s
can be 1? Note that every time Yt � 1, we have ¶Pt�1¶ & �2©3�¶Pt¶.

d. What is the probability Pr�T % 10 lg2 n�?
e. Prove that QUICKSORT makes & 10n log2 n comparisons with probability 1 � n

�O�1�.
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Week 3

Problem 11 (Implementing Karger’s RANDMC Algorithm). ¸
Let G � �V,E� be an undirected multigraph on n vertices. Note that ¶E¶ could be much larger than �n

2
�.

Suppose you have the two data-structures: (a) for every vertex, you have a dictionary deg�v� which counts
the number of edges incident on v, and (b) you have an n�n array which maintainsAuv � Avu, the number
of edges between u and v. Using this show how to sample a random edge in E in O�n� time.

Now suppose you picked e � �x, y� and you decide to contract it. That is, G will get rid of x and y, and
add a new vertex �xy�. What are the changes you need to make to the data-structures? Show that all this can
be done in O�n� time (assuming addition/subtraction/multiplication/division are all O�1� time operations).
Using this argue that RANDMC takes O�n2� time.

Problem 12 (Taking care of false positives). ¸
Let U be a universe of n elements where every element e " U has a score score�e�. Let S ��

<e"U score�e�. Imagine you have an importance sampling algorithm A which return an e " U with proba-
bility proportional to score�e�. That is, Pr�A returns e� � score�e�

S

Design an algorithm which takes a parameter K, ε " �0, 1�, δ " �0, 1©2�, makes N �� O � S
K
�
ln�n©δ�

ε2
�

calls to A and returns a subset H N U such that with probability ' �1 � δ� we have both:

(a) every element e " U with score�e� ' K is present in H , that is, total recall.
(b) every element e " H has score�e� ' K�1 � ε�, that is, high precision.

Remark: When U is the collection of all pairs in �n�� �n�, score�i, j� � �AãA�ij , and the algorithm
A is the Cohen-Lewis sampler, then this shows how to get rid of false positives.

Problem 13 (Estimating the number of connected components using graph queries). Broken into parts to
make it simpler. Please first try without looking at hints.

We assume the undirected graph access model used in the lecture notes. To recall, you can access a random
vertex v, and for any vertex v you can query its degree deg�v�, and for any integer 1 & i & deg�v�, you can
obtain the ith neighbor of v (in some arbitrary but fixed order). In this exercise the objective is to estimate
the number of connected components in the graph upto an additive error of εn. That is, if C� is the number
of connected components, we wish to return an estimate C such that Pr�¶C � C�¶ ' εn� & δ. Proceed in
the following way. First, observe that we want to obtain an �ε, δ�-additive estimate to N �� C

�

n
. Next,

a. Define conn�v� to be the size of the connected component containing v. Establish a relation between
C

� and<v"V
1

conn�v�
.

b. Consider the following test: sample a random vertex v, and set test �� 1
conn�v�

. What is Exp�test�?
What is Var�test�? How many samples do we need to get an �ε, δ�-additive estimate to C

�

n
?

c. A big issue: how do we figure out conn�v�? If we run DFS from v and the whole graph is connected,
we may take O�n � m� queries. So, instead define conn

¬�v� �� min �conn�v�, 2
ε
�. Show how

conn
¬�v� can be evaluated in O�1©ε2� queries.
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d. Prove that
»»»»»»<v"V

1
conn¬�v�

�<v"V
1

conn�v�

»»»»»» & εn
2

.

e. Complete all the details to give an �ε, δ�-additive approximation to C
�

n
makingO� 1

ε4
ln�1©δ�� queries.

Problem 14 (Feige’s Estimate of Average Degree). Y
In this exercise, we will sketch the steps needed to show how to obtain, with probability ' 1 � δ, a�2 � ε�-approximate estimate of davg by sampling N � O �Õ n

d0
� poly �1

ε
� ln�1©δ�	 random vertices in a

graph and querying their degrees. Here d0 is a known lower bound on davg. Note that this procedure won’t
use neighbor queries.

First we order the vertices in decreasing order of degree: d1 ' d2 '�dn, where di is the degree of the
ith vertex in this order.

a. Prove that for any 1 & k & n, we have

=
i$k

di &=
i'k

di � 2�k2� (1)

This is the crucial fact that will use that these di’s are not arbitrary numbers but arise as degrees of
graphs.

b. Recall that test is the degree of a random vertex. Let k �� +Ôεndavg1 and define a random variable
X which equals test if deg�v� & dk, but is 0 otherwise. Note, this random variable is for analysis
purpose only since neither do we know davg nor do we know dk. What is important is that X & test
with probability 1.

(i) What is Exp�X�? Using (1), prove davg ' Exp�X� ' �1�ε
2
� � davg.

(ii) Prove that dk &
Ö
ndavg
ε

.

(iii) Prove that Var�X�

Exp2�X�
� O �Õ n

d0
	. Now conclude that if we take N1 �� O �Õ n

d0
�

1
ε3
	 samples of

test and take the average to get est, then we get that

Pr�est $ �1 � ε

2

 � davg� & ε

12
(2)

That is, est can’t be much smaller than davg©2, whp.

c. We still haven’t ruled out the fact that est could be much bigger than davg. To take care of this, we
simply use Markov’s inequality. Note that Pr�test % �1� ε�davg� & 1

1�ε
$ �1 � ε

2
� if ε $ 1. Use this

to argue that the est obtained above by taking average of N1 samples satisfies

Pr�est % �1 � ε�davg� & 1 �
ε

2
(3)

d. Finish up using ideas in Problem 6. Note (2) and (3) are similar to that problem’s premise. How many
vertices do you need to sample in all as a function of n, d0, ε, and δ?
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Week 4

Problem 15 (General Maximum Load : an exercise in using the general Chernoff bound).
Imagine the balls-and-bins process with m balls and n bins. Find as general a function f�m,n� as you

can such that you assert that with probability ' 1 � 1
n

, the maximum load in any bin in & f�m,n�. When

m � n, the lecture notes assert f�m,n� � O � lnn
ln lnn

�. We are interested in the form of f�m,n� and not the
constants. So, an answer in the Big-Oh notation is not only OK, it is encouraged.

After you have obtained this f�m,n�, write it as a univariate function of n in the special cases of
m �

Ó
n, m � n

2©3, m � n lnn, and m � n
2.

Problem 16 (Playing with Poisson Random Variables). Let Z � Pois�k� where k is a positive integer.

a. Prove that Var�Z� � k. In fact this holds even when k is not an integer.

b. Prove that a mode of Z is k as well. That is, Pr�Z � k� ' Pr�Z � j� for any other integer j.

c. Y Find a constant c such that Pr�Z ' k� ' c and Pr�Z & k� ' c. What is the largest c you can
find? The true answer is c � 1

2
, and extra admiration if you can achieve this.

Problem 17 (Number of empty bins.). ¸
Suppose you throw n balls independently into n bins uniformly at random. Let X denote the number of
empty bins at the end of the experiment. We wish to understand how this looks like.

a. What is Exp�X�? Your answer should be a function of n. When n � �, what does your answer
converge to?

b. What is the best upper bound you can give to the probability Pr�X '
n
2
� and Pr�X &

n
3
�?

Problem 18 (Coupon Collector’s Lower Bound). ¸
Recall the coupon collector problem: there are n coupons, and every day you receive one of them uniformly
at random. Let X be the number of days when you receive all n coupons. In the lecture, we proved
Exp�X� � nHn. For any positive c % 0, prove

Pr�X & n lnn � cn� & 2e
�e

c

Remark: Actually, it is not much more difficult to show that if c is a fixed constant, then the probability
of the LHS tends to e�e

c

as n��.
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Week 5

Problem 19 (Comparing Multisets).
In this problem you are given two multisets S1 and S2 from a universe U � r0, 1, . . . , N � 1x. That

is, the same element may appear more than once in a set. You have to design an algorithm which decides
if these two multisets are equal. That is, the number of times every element appears in the multiset is the
same. Using universal hash functions, describe a randomized algorithm to solve this problem in expected
O�n� running time, where n is the number of elements in ¶S1¶ � ¶S2¶ counting multiplicities.

Problem 20 (Is the b necessary?). ¸
In the lecture notes, the Carter-Wegman universal family takes two parameters a, b and sets ha,b�x� ���ax � b� mod p� mod n. Is the extra b necessary? That is, consider the family

F �� rha � a " r1, . . . , p � 1xx x where ha�x� �� ��ax� mod p� mod n

What is wrong with the following “proof” which shows that G is a UHF? In particular, show an example of
x j y where Prh"F �h�x� � h�y�� is in fact % 1

n
. Using that, find the precise line which has a bug.

Proof. Fix x j y in U . Note that for ha�x� � ha�y�, we must have that ax mod p � ay mod p� k �n
for some integer k. Which in turn implies,

a � �x � y� mod p � k � n

Since the LHS is in r0, 1, . . . , p � 1x, we get k & �p � 1�©n.
Now, a � �x � y� �p k � n, we must have a � �x � y��1 � kn mod p. No other value would work.

Since k has & p�1

n
distinct values possible, at most �p� 1�©n values of a could lead to ha�x� � ha�y�.

That is, the probability this occurs is & 1©n, since a is picked randomly from r1, 2, . . . , p � 1x.

Correct the proof to give the best possible upper bound on Prh"F �h�x� � h�y�� for x j y.

Problem 21 (Bloom Filters). ¸
Let U be a finite set of N objects (think all images in the world, if you will),. Let P N U be a subset
of images of interest (perhaps this class photo roster), and the size of ¶P ¶ � m 8 N . We desire a data
structure which allows two operations: Insert�x� which inserts the element x " U into P , and Search�u�
which given an element u " U says YES if u " P and NO, otherwise. We wish to do so maintaining very
little space. We are allowing false positives, that is, we are OK if you say u " P even when it is not, but we
want to bound the probability of a false positive.

To do so, we maintain a bit-array B�1 � n� initialized to all 0s for some natural number n which
you have to figure out. Next, we independently select k hash functions h1, h2, . . . , hk from the set of all
functions. Crucially, not a UHF (see the Y question below). Using these, we implement the data structure
operations as follows.

• Insert�x�: For 1 & i & k, set B�hi�x�� � 1.
• Search�u�: Say YES if all B�hi�u�� return 1; say NO even if a single B�hi�u�� returns 0.

9



Note that Search�u� will give no false negatives.
Consider an operation where the m elements of P have been Insert-ed. For any j " �n�, let Ej be the

event that B�j� � 1 after the m insertions. That is, the jth bit of the bit-array is set to 1.

a. Fix a j in r1, . . . , nx. What is Pr�Ej�? Use this to figure out p defined as the expected fraction of
entries j with B�j� � 1 (or “non-empty bins”).

b. Assuming that the p you calculated above is the actual fraction, calculate the false positive rate
of Search in terms of n,m and k. That is, given an element u � P , what is the probability that
Search�u� says YES?

c. Suppose we fix n and m both. Figure out the k which minimized the false positive error. (This won’t
be an integer, but swing with it). For this value of k, write the probability of false positive as a function
of n and m.

d. How large does n
m

need to be to make this false positive error $ 1%?

e. Finally, what does Poisson approximation tell you about the assumption you made? The assumption
that the expected was actual. How does it change your calculation of part (d)?

f. Y How do things change when hi’s are drawn from the Carter-Wegman family mapping U to �n�?
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Week 6

Problem 22 (Heavy Hitters). ¸
Suppose we wish to use the COUNT-MIN sketch to solve the following HEAVY HITTERS problem :

given a parameter φ, we wish to (a) return all elements i " �n� such that fi ' φF1, but (b) we don’t want to
return any element j " �n� with fj & �φ � ε�F1. More precisely, we want both things (a) and (b) to occur
with probability 1 � δ. Here F1 � ½f½1.

Note that there is a simple solution : run the COUNT-MIN algorithm with δ©n making sure that with
probability 1� δ, for all i " �n� we have fi & rfi & fi � ε � F1. And thus, we simply go over all i " �n� and
return the set S �� ri � rfi % �φ � ε�F1x. Convince yourself that (a) and (b) occur with probability 1 � δ.

However, the time taken to return the set is O�n�. Design an algorithm using the idea used in range
counting to obtain an algorithm that takes much less time. It should be closer to log n. You may assume 1

φ

is a constant.

Problem 23 (A better analysis of COUNT-SKETCH). ¸
In class, we showed the following estimate about COUNT-SKETCH: we proved that for any i " �n�, the

probability Pr �»»»»»»rfi � fi
»»»»»» ' ε½f½2� & 1

3
.

We can analyze better. LetH denote the set of elements i with the , 1
ε2
2-largest fi’s. Let L �� �n�¯H be

the long tail of low frequency elements. Define ½f½tail ��
Õ
<i"L f

2
i . Clearly, ½f½tail $ ½f½2, and indeed

in many applications can be much smaller. Prove that COUNT-SKETCH run with k & 10
ε2

actually satisfies

Pr �»»»»»»rfi � fi
»»»»»» ' ε½f½tail� & 1

3

for every i " �n�.
Problem 24 (Estimating Fk with general updates in insertion only streams).

In the lecture, we estimate Fk assuming every update is of the form �i, 1�. Show how you will modify
the algorithm if the updates looked like �i, c� where c is a positive integer. If this needs you to modify
the reservoir sampling procedure, then show how you will do this. Does the number of samples change
depending on how large these c’s are?
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Week 7

Problem 25 (Approximate counting with smaller space). ¸
Imagine a stream of elements coming at you, and you want to count the number of items that are passing

by. Clearly, this just requires maintaining a counter, and if m items pass by, then one needs only *log2m0
bits. Can one do away with smaller space? The answer is yes, if one is OK with approximation: one can get
away with O�log logm� bits. In this exercise, you need to analyze the following algorithm.

1: procedure PROBABILISTIC COUNTER:
2: Maintain a counter C initialized to C � 0.
3: for when element e arrives do:
4: With probability 1

2C
, increment C � C � 1.

5: return est� 2
C
� 1.

a. Show that est is a unbiased estimate of the number of elements in the stream, that is, Exp�est� � m.

b. Show that the variance of the estimate is Var�est� � m�m�1�

2
.

c. For an integer α ' 1, what is the probability that C ' log2m � α? What is the probability that the
space required by the above algorithm is % log2 log2m � 1 bits?

d. How many bits are required to obtain �1 � ε�-approximation to m with probability ' 1 � δ?

e. YWhat happens if we change the probability 1
2C

to 1
�1�η�C

for some η " �0, 1�? Can you show how
this leads to a much better space bound for a suitable η?

Problem 26 (Sampling among the distinct elements).
RESERVOIR SAMPLING samples an element i in a stream with probability proportional to fi. What if

we wanted to obtain an element uniformly at random among the distinct elements. That is, we want i to be
sampled with probability 1

F0
if i is in the stream, and 0 otherwise.

Show that the algorithms done in class can do the job “approximately”. Indeed, show that FLAJOLET-
MARTIN can be used to return i in the stream with probability ' 1

cF0
for some constant c. What about

BJKST?

Problem 27 (Single Element Recovery). ¸
Suppose x " r0, 1xn is an unknown Boolean vector. The only way you can access it is via a sum-query,

that is, you can pick a subset S N �n� and obtain the sum x�S� �� <i"S xi. You goal is to find any one
coordinate i " �n� such that xi � 1, or assert that x is the all zero vector.

a. First show that this problem can be solved by a deterministic algorithm using & *log2 n0 � 1 sum-
queries.

The above algorithm however proceeds in rounds. We want an algorithm which makes all questions in a
single round. In other words, we want to find a collection of subsets S1, . . . , SL such that for any vector
x " r0, 1xn, upon receiving the answers x�S1�, x�S2�, . . . , x�SL�, the algorithm can output a coordinate i
with xi � 1 with probability ' 1 � δ.
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b. YSuppose you knew that<n
i�1 xi is exactly 1. Show there exists a collection of *log2 n0 setsA1, . . . , A*log2 n0

such that given answers x�At�’s, one can exactly figure out the single coordinate i with xi � 1.

c. Now suppose you knew <n
i�1 xi � d. Let R be a subset of r1, 2, . . . , nx where each i " R with

probability 1
d

. What is the probability Pr�<i"R xi � 1�? Furthermore, if it is 1, then can you use the
algorithm in part (b) as a black box to obtain an element with xi � 1. Argue that O�log n log�1©δ��
queries would suffice to get you what you want with probability ' 1 � δ.

d. How does your answer in part (c) change if d & <n
i�1 xi & 2d?

e. You don’t know d up-front (you could find it out using a single sum-query, but you don’t have rounds).
Show how you can use d � 2

i for 1 & i & �log2 n$ to solve the single element recovery problem with
O�log

2
n log�1©δ�� queries.
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Week 8 and 9

Problem 28 (A better deterministic algorithm).
Consider the modification of WEIGHTED MAJORITY where we update the mistaken expert’s weights as

wi�t � 1� � wi�t� � �1 � η�
for some parameter η " �0, 1©2�. Prove that if there exists an expert which makes at most k mistakes, then
the WEIGHTED MAJORITY algorithm with any parameter 0 & η & 1

2
makes at most 2�1 � η�k � 2 lnn

η

mistakes.

Problem 29 (Maximum Coverage).
In class, we looked at the set cover problem which asked the question of the smallest number of sets that

need to be picked to cover all elements. In this exercise, we look at a dual problem : given a parameter k,
figure out how to pick k subsets so that the maximum number of elements in U are covered. To this end,
consider the following LP

LP �� max =
e"U

� ze ze & =
j�e"Sj

xj ,
m

=
j�1

xj � k, x " �0, 1�m, z " �0, 1�n
xj is supposed to indicate if Sj is picked. ze is supposed to indicate if e is covered by the sets picked. We
want to maximize the numbers of elements covered. LP, therefore, is an upper bound on the maximum
elements any k-sets can cover. Can you use the �x, z� to design an algorithm which picks exactly k sets and
covers ' �1 � 1

e
� � LP many elements?

You may find the following inequality handy: for any 0 & t & 1, 1� e
�t
' �1� 1

e
�t. This itself follows from

the “concavity” of the function 1 � e
�z .

Problem 30 (1 Dimensional k-means).
Imagine all the n points P given to you are on a single line. You may assume this line is the x-axis.

Now you run the k-means++ algorithm on these set of points. What can you say about the algorithm? First,
can you come up with an example where the solution returned is not the optimal solution (with % 1©2
probability)? Can you prove the approximation factor is better than O�ln k�?
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