
CS49/249 (Randomized Algorithms), Spring 2021 : Lecture 21
Topic: Streaming VI : Counting Distinct Elements with Deletions

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.
Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

• In the last two lectures, we saw algorithms to estimate the number of distinct elements in an insertion
only stream. But, as is, these algorithms do not work with deletions. More precisely, every update in
the stream is of the form “add e” or “delete e”. We will assume for this lecture that “delete e” will
only occur if there was an e to begin with. But as we see, this is not going to be strictly necessary
(in case we want to handle situations when e appears −1 times). We will use d to denote the number
of distinct items in the stream at the end. Note that in the middle there could be many more distinct
elements. And this is the key problem to overcome in a sense. Jargonically, this statistic is called the
L0; the L implies that the updates allow deletion.

• One reason is that the algorithms don’t remember items which hash to “smaller indexed” coun-
ters/buckets. For instance, imagine running BJKST on the stream which inserts the elements (1, 2, 3, . . . , n)
but then deletes (1, 2, . . . , n−dlg ne). At the end of the stream, the number of distinct items is dlg ne.
What does BJKST do? Well, by the time we have seen the first n − dlg ne elements, the value of
rmin has been set such that 2rmin ≈ ε2n since c

ε2
· 2rmin approximates n− dlg ne well. Which means,

the next dlg ne insertions will almost surely be ignored : the chance that any one of them has ≥ rmin
trailing zeros is ≈ 1

ε2n
, and thus whp, none of them will have that rmin trailing zeros. And thus, they

will be ignored. But these are the distinct elements after the deletions. And since BJKST forgets
these, it can’t possibly give the correct answer. Indeed, after all the deletions, all the buckets will be
empty, and the estimate would be 0.

• However, the basic idea is still the same. If there are d distinct items, and we sample at rate 1/d, then
with constant probability we expect to see one item. Thus, an estimate of d can be found by taking
the reciprocal of the smallest sampling probability at which we see at least one item.

For this lecture, let us stick to the following “separation problem” : given a parameter t decide whether
d ≤ t or d > 2t. More precisely, if d ≤ t, then the algorithm asserts this with high probability, and
if d > 2t, the same guarantee holds. When t < d ≤ 2t, no guarantee is made on the algorithm.
If such a subroutine exists, then we get a 2-approximation to d, with high probability. Indeed, run
this subroutine in parallel on the t’s which are the O(lg n) powers of 2, {1, 2, 4, 8, . . . , 2blgnc}, and
find the smallest t∗ = 2i such the algorithm asserts d ≤ t∗. Return t∗ as your answer. Note that if
2i ≤ d < 2i+1, then whp the algorithm says “d < t” for t = 2i+1 and says “d > 2t” for t = 2i−1.
Thus, whp, the algorithm returns 2i or 2i+1, which are 2-approximations to d.

To solve the separation problem, the algorithm up front samples (via hash functions) S ⊆ [n] with
probability≈ 1

t each. In the stream, the algorithm only focuses on elements in S and decides if fi = 0
for all i ∈ S. This corresponds to just maintaining counts on the number of updates1. The point is,
if d < t, then there is a constant probability that all fi’s in S are 0, while if d ≥ 2t, this probability
is strictly smaller by a constant amount. One can use this gap by taking repeated samples, and then
using Chernoff bounds. Details follow.

1in the case the stream isn’t allowed to delete an element which is not there

1

• Algorithm.

1: procedure SEPARATIONPROBLEM(t, δ):
2: Choose k hash functions h1, . . . , hk : [n]→ [4t] from a pairwise independent hash

family. . k = O(ln(1/δ)).
3: For 1 ≤ i ≤ k, Si := {e ∈ [n] : hi(e) = 0}. . This can be computed on the fly.
4: Maintain counters Ci for 1 ≤ i ≤ k.
5: for Update add/delete e do:
6: for i = 1 to k do:
7: if e /∈ Si then:
8: Do nothing.
9: else:

10: increment/decrement counter Ci depending on whether add or delete.
11: Let N be the number of counters which are positive at the end of the stream.
12: If N > 7k

24 , return BIG, that is, d ≥ 2t. Otherwise, return SMALL.

Theorem 1. If d ≤ t, then the above algorithm returns SMALL with probability ≥ 1 − δ. If
d > 2t, then the above algorithm returns BIG with probability ≥ 1− δ.

Proof. Let D ⊆ [n] be the set of elements which have fi > 0 at the end of the stream. For 1 ≤ i ≤ k,
let Ei be the event that the set Si intersects D. That is,

For 1 ≤ i ≤ k, Ei := {Si ∩D 6= ∅}

We can upper bound and lower bound the probability of Ei as follows.

– The probability of Ei can be upper bounded by the union bound. For any element e ∈ D, the
probability e ∈ Si is = 1

4t by the property of the pairwise hash family. And therefore union
bound gives us

Pr[Ei] ≤
d

4t
(1)

– To lower bound the probability of Ei, we use another probabilistic inequality which we haven’t
seen so far. It says given event A1, . . . , An, the probability of the union is at least

Pr[
n⋃
j=1

Aj] ≥
n∑
j=1

Pr[Aj]−
∑

1≤j<`≤n
Pr[Aj ∩A`] (Inclusion-Exclusion)

This can be used to lower bound Ei by noting that Ei is the union of the events Ae for e ∈ D
where Ae occurs if e ∈ Si. Thus, using (Inclusion-Exclusion), we get

Pr[Ei] ≥
∑
e∈D

1

4t
−
∑
e,e′∈D

1

16t2
≥ d

4t
−
(
d
2

)
16t2

≥ d

4t
·
(
1− d

8t

)
(2)

Therefore, we get that: if d ≤ t, Pr[Ei] ≤ 1
4 . On the other hand, if 6t ≥ d > 2t, then Pr[Ei] ≥ 3

8 ;
one can see by inspecting (2). What about the case when d > 6t? When d becomes large, (2) loses
its efficacy (giving vacuous results when d ≥ 8t). But if d > 6t, then a simple Chebyshev application
solves the problem.

2

Exercise: If d > 6t, prove that Pr[Ei] > 1
3 using Chebyshev.

Proof. Let Z := |Si ∩D|. Note Exp[Z] = d
4t >

3
2 , and since the function is drawn from a pairwise

independent hash family, Var[Z] ≤ Exp[Z]. Thus, Pr[Z = 0] ≤ Pr[|Z − Exp[Z]| > Exp[Z]] ≤
1

Exp[Z] <
2
3 .

Let N denote the number of counters which are positive at the end of the stream. We see that
Exp[N] =

∑k
i=1Pr[Ei]. Thus, when d ≤ t, Exp[N] ≤ k

4 and when d > 2t, Exp[N] > k
3 . A

Chernoff application gives

If d ≤ t, Pr

[
N >

7k

24

]
≤ e−C1k and If d ≥ 2t, Pr

[
N <

7k

24

]
≤ e−C2k

where C1 and C2 are two constants. Thus, if k ≥ C ln(1/δ) for a large enough constant C, the
theorem follows.

1: procedure COUNT DISTINCT WITH DELETIONS:
2: For t ∈ {1, 2, 4, 8, . . . , 2blgnc} run SEPARATIONPROBLEM(t, η) with η = δ

lgn .
3: Return the smallest t such that SEPARATIONPROBEM(t, η) returns SMALL.

Theorem 2. COUNT DISTINCT WITH DELETIONS returns an estimate t∗ with d
2 ≤ t∗ ≤ 2d.

Proof. Let i be such that 2i ≤ d ≤ 2i+1. Thus, when t ≤ 2i−1, we have d ≥ 2t. And thus, with
probability 1 − η, SEPARATIONPROBLEM(t) will return BIG. Therefore, the probability there exists
some t ≤ 2i−1 such that SEPARATIONPROBLEM returns SMALL is ≤ i · η. Similarly, when t = 2i+1

we have d ≤ t, and thus with probability 1 − η, SEPARATIONPROBLEM(2i+1) returns SMALL. In
sum, the estimate we return t∗ ∈ {2i, 2i+1} with probability 1− (i+1)η ≥ 1− δ since i ≤ lg2 n.

• Space and Time. The total space usage in the SEPARATIONPROBLEM algorithm is dominated by the
k hash functions and counters, where k = O(lg lg n). In the COUNT DISTINCT WITH DELETIONS,
everything gets multiplied by O(lg n) because that’s the number of t’s. So, if the hash functions itself
takeO(log n) bits, then we getO(log2 n log log n) bits. The total time per update in the SEPARATION

problem is also O(k) = O(lg lg n), and this is also multiplied by O(lg n) in COUNT DISTINCT

WITH DELETIONS. In general, everything is multiplied by O(log n) as compared to the insertion
only setting.

Remark: How do we improve the factor 2? Note that there was nothing sacrosanct about the
choice of 2 in the separation problem. If we could separate between d ≤ t and d > (1+ ε)t, then
we would get an (1+ ε)-approximation. And indeed, if we had truly random hash functions, then
the same algorithm as above would work, and the analysis would not be too difficult. The number
k would get an extra 1

ε2
. If we don’t assume truly random hash-functions, then we can also do

away with t-wise random hash-functions with t ≈ lg(1/ε). A hash function is t-wise random, if

3

for any t-distinct elements, their hashes are mutually independent. Such hash functions exist with
space complexity O(t lg n).

Remark: How do we design algorithms without assuming fi ≥ 0? Well, it boils down to the
fact whether we can distinguish between the case all fi = 0 or not. This can be done using a
randomized algorithm, and perhaps will appear in the problem set.

4

