
CS49/249 (Randomized Algorithms), Spring 2021 : Lecture 15
Topic: Hashing II : Perfect Hashing

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.
Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

• We saw that universal hash functions allow us to solve the static dictionary problem of searching in
a set D ⊆ U of m elements from a universe of N elements in O(1) query time, and O(m) space.
However, the query time is in expectation. That is, for any x ∈ U , the expected time (given h) to
search is O(1). In particular, if an “adversary” knew the function h, then they could find an x for
which SEARCH(x) took more than constant time. In this lecture we see an idea of double hashing
which allows one to obtain an worst-case O(1) time result.

• A large space solution. Before describing the double-hashing idea, let us show an O(1) worst-case
solution which takes O(m2) space. The main ideas are from the birthday paradox problem: if one
throws ≤

√
n/2 balls into n bins, then constant probability there is no collision.

Let H be a UHF of functions h : U → [m2], where we use [k] as a shorthand for {0, 1, . . . , k − 1}.
For x, y ∈ D with x 6= y, let Zx,y be the indicator random variable that h(x) = h(y) when h ∈R H is
drawn uar. Let Z :=

∑
(x,y)∈D×D,x 6=y Zx,y denote the number of collisions. By the property of UHF,

we know that Pr[Zx,y = 1] ≤ 1
m2 . Thus,

Exp[Z] ≤
(
m

2

)
· 1

m2
<

1

2
⇒ Pr[Z = 0] ≥ 1

2

In plain English, if we draw an h ∈ H uar, then the probability we get a perfect hash function with no
collisions is ≥ 1

2 . Thus, the pre-processing step of “keep sampling h ∈ H till we get a perfect hash
function” takes O(m) time. And once we get a perfect hash function, then SEARCH(x) is O(1) time
worst-case.

• Double Hashing. Recall the hashing solution we had. We hashed x ∈ D to T [h(x)] where T [h(x)]
was a list. In expectation, this list size was small, but some lists could indeed be big, and therefore, in
worst-case, the search time is not O(1). The idea of double hashing is simple: instead of using a list
to store T [h(x)], use another hash-function. Except this second hash-function is going to be a perfect
hash function for the smaller dictionary of the items that get mapped to T [h(x)]. If bi elements get
mapped to T [h(x)], then from the previous bullet point, the space required would be O(m) (for the
first hash function) and

∑n
i=1O(b2i) for the n secondary hash-functions. Since we don’t expect any

bi to be very large, the sum of squares can be bounded by O(m). This is the high level idea, and now
we give details.

• Construction using UHFs. We are going to draw our first-level hash function (the primary hash
function) from a UHF family mapping U to n := m.

For 1 ≤ i ≤ n, define bi to be the number of x ∈ D with h(x) = i. As discussed above, we wish to
argue that B :=

∑n
i=1 b

2
i is small. Indeed, we can show Exp[B] is small as follows.

Define Ci :=
(
bi
2

)
denote the number of pairs of distinct x and y which map to the position i. Define

C :=
∑n

i=1Ci to be the total number of collisions. Now note that

C =
∑

(x,y)∈D×D:x 6=y

Zx,y

1

where Zx,y is the indicator random variable of the event h(x) = h(y). Since h is drawn from a UHF,
we get that

Exp[C] ≤
(
m

2

)
· 1
n
=

m− 1

2
since n = m

Now, we get

Exp[B] = Exp

[
n∑

i=1

b2i

]
= Exp

[
n∑

i=1

(
bi + 2 ·

(
bi
2

))]
= Exp[

n∑
i=1

bi]︸ ︷︷ ︸
=m

+2 ·Exp[C]︸ ︷︷ ︸
≤m−1

2

< 3m

And thus, by Markov’s inequality

Pr[B ≥ 6m] ≤ 1

2

Therefore, in O(1) samples of h from the UHF family, we can obtain one with B ≤ 6m. And then,
we simply apply the perfect hash functions from the second bullet point.

• Algorithm Details. Now we are ready to describe the pre-processing and the SEARCH algorithm.

1: procedure PREPROCESS(D):. |D| = m.
2: while true do:
3: Draw h from a strongly UHF which takes U to [n] where n = m.
4: Evaluate bi which is the number of x ∈ D mapping to i, for all i ∈ [n]. . O(m) time.
5: if

∑n
i=1 b

2
i > 6m then: . This occurs with probability ≤ 1

2 .
6: Abort this loop and go to next loop.
7: . At this point, we know

∑n
i=1 b

2
i ≤ 6m.

8: for 1 ≤ i ≤ n do:
9: Let Di := {x ∈ D : h(x) = i} with bi = |Di|.

10: Construct perfect hash function gi : U → [b2i] as in second bullet point for Di.
11: Construct the corresponding hash table Ti[0 : b2i − 1]
12: . This takes O(bi) time in expectation, and uses O(b2i) space.
13: Store x in location Ti[gi(x)].
14: . The total time and space taken over the for-loops is O(m) time.

To search for a given x ∈ U , we first compute i := h(x), and then search for x in Ti[gi(x)]. This
takes O(1) time if function computations and accesses are O(1) time.

• Space Analysis. The total space required in the hash-tables are
∑n

i=1 b
2
i ≤ 6m by design. The total

time taken to find the gi’s is
∑n

i=1O(bi) = O(m).

2

