
CS49/249 (Randomized Algorithms), Spring 2021 : Lecture 13
Topic: Hashing I : Universal Hash Functions

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.
Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

• Hashing. Consider a universeU of objects which can be represented as integers (formally, a countable
set). We use N to denote the size |U | and this can be huge; think of U as the set of ASCII strings of
length ≤ 50. Since each ASCII character has 128 possibilities, this set is of size 12850. Now imagine
there is a certain subset D ⊆ U of |D| = m of these strings we are interested in. In particular, we
wish to store them in such a way that given any candidate string x ∈ U , we can answer the query “is
x ∈ D” really fast. This operation is called the SEARCH operation.

• Let us consider two solutions. One could store the set D as a huge bit-array A[0 : N − 1] where
A[s] = 1 iff s ∈ D and 0 otherwise. In that case, given any x ∈ U , one can quickly answer the
SEARCH query by accessing A[x], which takes O(1) time in the RAM model of computation. The
issue with this is that the space required to store this isN bits, which is prohibitive. The other solution
is store D as a binary search tree. In that case the SEARCH operation can be performed in O(logm)
time, and takes O(m) space1 Can we get best of both worlds?

• An idea from balls-and-bins suggests itself. Imagine the m elements of D as m balls which are each
assigned to one of n “bins”, or rather, numbers in {0, 1, . . . , n − 1} randomly. Formally, let h be
a “random function” which maps every x ∈ U to a random integer i in {0, 1, . . . , n − 1}. Then,
to store the dictionary D, one initializes an n-sized data structure T [0 : n − 1], and simply stores
s ∈ D at location T [h(s)]. If two elements s1 and s2 are mapped to the same location, that is
h(s1) = h(s2) = j, then T [j] contains both s1 and s2 as a (linked) list.

What’s good about this idea? Well, the space is O(n), the size of the structure T . If n ≈ m, the space
is good. How about the time taken for SEARCH? Given x ∈ U , the operation will investigate T [h(x)].
If it is empty, the algorithm says no. Otherwise, it performs a linear scan on the list at T [h(x)]. How
much time does this take? Since h is “random”, the expected number of collisions is ≈ m

n , and thus
the expected time (over the randomness in h) to search is going2 to be ≈ m

n , which is ≈ O(1) if
n ≈ m. And thus, we get the best of both worlds.

• There are two issues with the above idea. One, is that we would prefer a “worst case” result: for
every x we take O(1) time. The array solution had that guarantee. But the much bigger problem is
with the “random function” h. How are we even going to store this function so as to compute h(x)
when SEARCH(x) is queried? Since h is random, that is, it is one of the Nn functions from U to
{0, 1, . . . , n − 1}, the only way to store this is to have a table which tells h(x) for all x ∈ U . This
takes even more space than the array solution to the dictionary problem! Both the above problems can
be solved, and this is going to be covered this week.

• Universal Hash Family. The main idea to solve the hash-function-storage problem is to decrease
the randomness in h. Formally, instead of selecting h uniformly at random from all functions, one
chooses h uniformly at random from a much smaller collection of functions. Since the collection is

1we assume the elements in D fit in “word memory” and take O(1) space.
2We are going to prove a formal version of this soon.

1

small, the space required to represent a single h will be small. And yet, we do not want to lose all the
randomness, and still would like the intuition of “low probability of collision” to carry over. To this
end, one makes the following definition.

Definition 1 (Universal Hash Family (UHF).). A collectionH of hash functions from {0, 1, . . . , |U |−
1} to {0, 1, . . . , n− 1} if for any two distinct x, y ∈ U we have

Pr
h∈H

[h(x) = h(y)] ≤ 1

n
(1)

where the probability is over h ∈ H uniformly drawn at random.

Universal Hash Families exist. We will soon see how to construct them. But before doing so, let us
look at a few applications of Universal Hash Families.

• Implementing Dictionary with Expected O(1) Search Time. We now show that the condition (1)
suffices to implement the dictionary D such that SEARCH(x) takes O(1) time in expectation over the
choice of h ∈ H . The data structure initialization is as follows:

1: procedure PREPROCESSING:
2: Choose a universal hash family H of functions from U to {0, 1, . . . , n− 1} where
n = αm, where α is a constant.

3: Randomly sample h ∈ H uniformly at random.
4: Initialize a hash table T [0 : n− 1] initialized to empty lists.
5: For each s ∈ D, append s to the list at T [h(s)].

The space required by the hash table is O(n) = O(αm) (again, assuming the dictionary items fit
in memory word). The space required to store the hash function is σ(n,U). The time required is
O(m · τ) where τ is the time taken to compute the hash function. We will see that if logU also fits
in word memory (or O(1) words), then UHFs exist with both σ(n,U) and τ being O(1). Thus, the
preprocessing time and space will be O(m).

The SEARCH operation is what one expects : given x ∈ U , the algorithm searches for x in the list at
T [h(x)]. The time taken is τ +O(|T [h(x)]|). Thus, if τ = O(1), the time is dominated by |T [h(x)]|.
The next claim bounds this, and proves that the expected time, with the expectation taken over the
randomness in the choice of h, and this holds for all x, is O(1 + 1

α).

Lemma 1. For any x ∈ U , Exph∈H [|T [h(x)]|] ≤ 1 + 1
α .

Proof. This is really the balls-and-bins proof, except instead of a completely random allocation rule,
we are using what the UHF gives us.

For any y ∈ U , define Xx,y := 1 if h(x) = h(y) and 0 otherwise, where h is uniformly drawn from
H . The first observation is that

|T [h(x)]| =
∑
s∈D

Xx,s ⇒ Exp
h

[|T [h(x)]|] =
∑
s∈D

Exp
h

[Xx,s]

If s 6= x, then by (1), we have Exph[Xx,s] ≤ 1
n . If x = s, Xx,s = 1. Therefore,

Exp
h

[|T [h(x)]|] ≤ 1 +
(|D| − 1)

n
≤ 1 +

m

n
= 1 +

1

α

2

Remark: Although we have only talked about searching a fixed static dictionary D, one can
easily modify the structure so that INSERT and DELETE operations are also supported, which
can insert or delete elements into the dictionary. Do you see how?

• The Distinct Elements Problem. We give another simple application where hashing helps. In this
problem we are given an array A[1 : n] where each element is from the universe U . The objective
is to figure out if A[1 : n] consists of distinct elements from U , or are there duplicates. It is known
that if only comparisons are allowed between elements of U , then one needs Ω(n log n) comparisons.
Which matches the trivial algorithm of “sort-and-check.”

Using hashing, one can get a randomized algorithm running in expected O(n) time, once again as-
suming the number N fits in O(1) words. Indeed, the algorithm is simple. Choose m = n and hash
A[1 : n] into a hash table T [0 : n− 1] using a random h from any UHF H . To be precise, we sample
h ∈ H and then for each 1 ≤ i ≤ n, we compute j = h(A[i]), check if A[i] appears in T [j]. If it does
appear, then we say NOT DISTINCT and abort. If we never abort, then we say YES, distinct.

Is the algorithm is correct? When it says NO it produces a violation, and if A[i] = A[j] for i < j,
then we will say NO when processing A[j]. The expected running time is the expected number of
collisions as before, and thus as before for every 1 ≤ i ≤ n, we take O(1) time. Thus, the algorithm’s
expected running time is O(n).

• The Carter-Wegman Universal Hash Family. Recall, N is the size of the universe U . First, we pick
a prime number N < p ≤ 2N . Such a prime always exists by Bertrand’s postulate. For a fixed
a ∈ {1, 2, . . . , p− 1} and b ∈ {0, 1, . . . , p− 1}, define the hash function

ha,b(x) = ((a · x+ b) mod p) mod n (Carter-Wegman)

Remark: Note that if the integers N,m fit in the word size in the word-RAM model, then
computing ha,b(x) takesO(1) time, and storing the hash function amounts to storing a, b, p which
also takes O(1) space.

Exercise: One may wonder why we are taking mod p and then mod n? Why not just define
ha,b(x) = (ax+ b) mod n directly, where a, b are integers between 1 and n−1 and 0 and n−1,
respectively. Argue that this family is not a UHF even when n is a prime.

Theorem 1. The family

H := {ha,b : a ∈ {1, 2, . . . , p− 1} and b ∈ {0, 1, . . . , p− 1}}

is a universal hash family.

Proof. Throughout, we will use Zp to denote the set {0, 1, . . . , p − 1} which is the set of possible
remainders. We need to show that if we pick a ∈ Zp \ {0} and b ∈ Zp uniformly at random, then

Pr
a,b

[((ax+ b) mod p) mod n = ((ay + b) mod p) mod n] ≤ 1

n

3

Note that the event in consideration occurs if and only if

(ax+ b) mod p = k and (ay + b) mod p = k + qn

for some k ∈ Zp and some integer (possibly negative) q such that (k + qn) lies in Zp. Also note:
x 6= y implies q 6= 0.

Let us call a pair (k, q) conflicting if k ∈ Zp, k+ qn ∈ Zp, and q 6= 0. We first claim that the number
of conflicting pairs are not too many.

Claim 1. The number of conflicting pairs (k, q) is at most p(p−1)n .

Proof. For any fixed k, how many q’s can make (k, q) conflicting? That is, how many q’s are there
such that k + qn ∈ {0, 1, . . . , p − 1}. In other words, qn ∈ {−k,−k + 1, . . . ,−k + p − 1}. This
is simply asking how many multiples of n can there be in p consecutive integers. Since p is a prime,
and in particular, n doesn’t divide p, this number is at most p−1n .

Call a pair (a, b) bad if there exists a conflicting pair (k, q) such that (i) (ax+ b) mod p = k and (ii)
(ay + b) mod p = (k + qn). Here is the main observation: if we fix a conflicting pair (k, q), there
is exactly one possible pair (a, b) such that (i) and (ii) occur. Why? Because considering a and b as
the variables and x, y, k, q,m as fixed, we are asking how many solutions are there to the following
system of linear equations in two variables

ax+ b ≡p k and ay + b ≡p (k + qn)

This has exactly one solution since p is a prime. These are

a =
(
qn · (y − x)−1

)
mod p and b = (k − ax) mod p

where for any z ∈ Zp \ {0}, z−1 is the unique number in Zp \ {0} such that z · z−1 ≡p 1. This is
called the multiplicative inverse of z.

In conclusion, the number of bad pairs (a, b) which lead to a collision ha,b(x) = ha,b(y) is exactly
the number of conflicting pairs. But the number of conflicting pairs is ≤ p(p−1)

n . Therefore,

Pr
h∈H

[h(x) = h(y)] = Pr
a,b

[(a, b) is bad] ≤
p(p−1)
n

p(p− 1)
=

1

n

4

