
CS49/249 (Randomized Algorithms), Spring 2021 : Lecture 6
Topic: Randomized Median Finding

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.
Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

• In this lecture we will see a randomized algorithm which takes an array A[1 : n] (any array, worst-
case) and finds the median of A (the n/2th largest/smallest entry) with high probability. This proba-
bility will tend to 0 as n → ∞. The number of queries made by the algorithm will be roughly 1.5n.
Apart from being a simple algorithm and a nice example of how sampling helps, this result is also
significant because the best deterministic algorithm for median finding makes 2.95n comparisons1,
and it is known that any deterministic algorithm must make at least 2.01n comparisons2.

• Idea. The idea is simple. One samples a small random subset R of the elements of A of s elements.
Think of s ≈ n3/4, and thus this can be sorted in o(n) time. The first thought that perhaps comes
to ones mind is : the median of R should be the median of A. This is very unlikely. However, the
median of R and median of A can’t be “too far” in the sorted order of A. More precisely, one looks at
two elements a and b, where a is the (s2 − t)th element in R and b is the (s2 + t)th element in R where
t� s is chosen such that with high probability, (a) the median of A lies between a and b, and (b) not
too many (only o(n)) elements of A lie between a and b.

If this is indeed the case, then the algorithm is clear: find a and b in R by sorting R, find the rank
of a in A taking one linear scan of A, find all elements Q between a and b in A with another linear
scan, and since Q is guaranteed to contain the median and have o(n) elements, sort Q to find what
you want. The rest of these notes give details of this simple idea. This algorithm is due3 to Robert
Floyd and Ronald Rivest.

• Let us first do some calculations. Throughout we will have integer parameters s and t which we will
set at the very end. As we go along, we will keep remarking what are the conditions we need on s
and t, and thus, obtain the final values. Let R be a random sample of A where every element of A
is picked in R independently with probability p = s

n . Thus, we expect Exp[|R|] = s and Chernoff
bound gives us the following.

Claim 1. Pr[|R| ≥ 2s] ≤ e−s/2

Remark: Indeed, the probability |R| is more than s + C
√
s is ≈ e−C

2
, and the probability

|R| ≥ s+ s2/3 itself would be o(n). We just chose 2s for convenience.

• Next, let S be the subset of “small” elements of A which are at most the median, and thus |S| = n
2 .

Let B be the subset of “big” elements A which are larger than the median. Define X := |S ∩ R|,
that is, the number of small elements picked in R. Once again, Exp[X] = s

2 since each of the n/2
elements are picked with probability s

n , and Chernoff gives us

1“Selecting the Median”, D. Dor and U. Zwick, SIAM J. Computing, 28(5), 1722–1758
2“On Lower Bounds for Selecting the Median”, D. Dor, J. Hastad, S. Ulfberg, and U. Zwick. SIAM J. Disc. Math., 14(3),

299–311
3“Expected time bounds for selection.”, R. W. Floyd and R. L. Rivest, Communications of the ACM, 18: 165–172, 1975

1

https://epubs.siam.org/doi/pdf/10.1137/S0097539795288611
https://epubs.siam.org/doi/pdf/10.1137/S0895480196309481

Claim 2. Pr
[
X ≤ s

2 − t
]
≤ e−t2/s and Pr

[
X ≥ s

2 + t
]
≤ e−2t2/3s

Proof. X can be written as
∑

i∈S Xi where Xi = 1 if i ∈ R and Xi = 0 otherwise. X is thus a sum
of independent random Bernoullis with Exp[X] = s

2 . Next, set4 ε = 2t
s and apply Chernoff bound to

get
Pr
[
X ≤ (1− ε)s

2

]
≤ e−ε2 Exp[X]/2 ≤ e−t2/s

The other inequality follows using the upper tail bound.

Here is the important consequence of the above fact.

Claim 3. Let a be the (s2 − t)th ranked element in R and b be the (s2 + t+ 1)th ranked element of R.

Then with probability ≥
(

1− 2e−2t
2/3s
)

, the median of A lies between a and b.

Proof. Note that ifX ≥ s
2− t, that is, we pick more than s

2− t small elements inR, then the (s2− t)th
element of R, that is a, must be small. Similarly, if X ≤ s

2 + t, that is, we pick at most s
2 + t small

elements in R, then the (s2 + t+ 1)th element of R, that is b, must be big.

Remark: Since we want to succeed with high probability, we must have 2t2 � 3s. At this point
2t2

3s ≤ ln(1/δ) would give (1− δ) as failure probability.

• Given an element x ∈ A, let rankA(x) be its rank in A; the minimum has rank 1, the median rank
n/2, the maximum rank n. We have established that whp rankA(a) ≤ n

2 and rankA(b) > n
2 . Next we

show that whp these ranks, rankA(a) and rankB(a) are indeed actually pretty close to n
2 .

Claim 4. With probability ≥ 1− e−
2t2

3(s−4t) , we have rankA(a) ≥ n
2 −

2tn
s .

Proof. To prove this, we define T to be the smallest n
2 −

2tn
s items of A. Let’s call them the “tiny”

elements of A. Note that elements which are not tiny have rank bigger than the RHS in the claim. So,
T ⊆ S. Let Z = |R ∩ T | be the number of tiny elements we pick in R. Note that if Z < s

2 − t,
then a which is the (s2 − t)th ranked items in R must not be tiny. Which, in turn, would imply
rankA(a) ≥ n

2 −
2tn
s . Thus,

Pr

[
rankA(a) ≥ n

2
− 2tn

s

]
≥ Pr

[
Z <

s

2
− t
]

To show that the RHS is big, we argue that its complement is small. To this end, for every i ∈ T ,
define Zi = 1 if i ∈ R and 0 otherwise. Z =

∑
i∈T Zi, and thus, Exp[Z] = s

n · |T | = s
2 − 2t.

Therefore,

Pr
[
Z ≥ s

2
− t
]

= Pr

Z ≥ (s2 − 2t
)

︸ ︷︷ ︸
Exp[Z]

·(1 + ε)

 ≤︸︷︷︸
Chernoff LT

e−ε
2 Exp[Z]/3 (1)

4so, 2t ≤ s, but we will get a stronger req soon

2

where, ε is chosen such that
(
s
2 − 2t

)
(1+ε) = s

2−t. A little manipulation shows that one can choose

ε =
2t

s− 4t

which, when substituted in (1) gives the desired claim.

A similar calculation (which I urge you to do) gives the following claim on the rankA(b).

Claim 5. With probability ≥ 1− e−
t2

(s+4t) , we have rankA(b) ≤ n
2 + 2tn

s .

Remark: I have been careful with constants till now just to show that one can. For aesthetic
reasons, and also to stress the important points, I am now going to move to Big-Oh notation.
Let’s start by noticing that we will choose t2 � s so that the probability of bad events are low.
Therefore, s− 4t and s+ 4t are all roughly s. This means the probabilities of the claimed events
not occurring in the above three claims are e−O(t2/s).

The above claim imply the following lemma which will be used in the analysis of the algorithm.

Lemma 1. Let R be a sample of A where every element is picked with probability s
n . Let a be

the
(
s
2 − t

)
th element in R and let b be the

(
s
2 + t+ 1

)
th element in R, where t � s. Then with

probability 1− e−O(t2/s), we have the following:

n

2
− 2tn

s
≤ rankA(a) ≤ n

2
≤ rankA(b) ≤ n

2
+

2tn

s

• Algorithm and Analysis.

1: procedure RANDOMIZED-MEDIAN(A):
2: Set parameters s =

⌈
n2/3

⌉
and t =

⌈
10n1/3 log n

⌉
.

3: Sample R by picking each element of A independently with probability s
n .

4: if |R| > 2s then:
5: return ABORT.
6: Sort R. . Takes O(s log s) comparisons.
7: a←

(
s
2 − t

)
th element in R, and b←

(
s
2 + t+ 1

)
th element of R. . Using sorted order

of R takes O(1) time.
8: Find rankA(a) using (A1, A2)← PIVOT(A, a). . This takes n comparisons.
9: if rankA(a) /∈ [n2 −

2tn
s ,

n
2] then:

10: return ABORT.
11: Find rankA(b) using (Q,A3) ← PIVOT(A2, b). . This takes n − rankA(a) ≤ 0.5n + 2tn

s

comparisons. rankA(b) = |Q|+ rankA(a).
12: if rankA(b) < n

2 or |Q| > 4ts/n then:
13: return ABORT.
14: Sort Q and return the n

2 − rankA(a)th item in Q. . Sorting Q takes O(nt
s log(nt

s)) com-
parisons.

3

Theorem 1. RANDOMIZED-MEDIAN(A) makes ≤ 1.5n + o(n) comparisons and either returns
the median or ABORTs. The probability of ABORT is ≤ n−O(1).

Proof. The probability of the ABORTs in Line 4, Line 9, and Line 12 is at most e−O(t2/s) by Lemma 1
and Claim 1. If t2 = Ω(s log n), then this probability is ≤ 1

nO(1) . This explains the relation between
s and t in Line 2 If no ABORTs occur, then the median of A lies in Q, and then Line 14 returns the
correct median.

The number of comparisons in Line 8 and Line 11 are ≤ 1.5n + 2tn
s . The other comparisons are

in Line 6 and Line 14. These take O(s log s) + O(nts log(nt/s)). Now we see how the parameters
are chosen. We need (a) t2 � s, (b) s log s � n, and (c) nt/s � n. If we balance the s log s ≈
(nt/s) log(nt/s), and using t2 ≈ s, we get s ≈ n2/3. Using the parameters chosen in Line 2, the
theorem follows.

Learning Tidbits:

• Algorithm Design: To solve a problem on “big data”, many times you can take a small sample,
solve the problem (or related problem), and then try to port back. For the median, we didn’t solve
the median on the sample (that didn’t work), but found stuff close to the median of the sample,
and ported back.

• Analysis: Once again, Chernoff bounds allowed us to argue that what we do in the sample, ports
back “as we expected” (or close to that). The other thing to digest is that the same random
sample simultaneously is good (ie, behaves as “expected”) for multiple sets. In this case, think :
“small” elements and “tiny” elements.

4

