CS49/249 (Randomized Algorithms), Spring 2021 : Lecture 11-12

Topic: Balls and Bins II : Poisson Random Variables and Poisson Approximation
Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.
Please discuss in Piazzalemail errors to deeparnab@dartmouth.edu

- Recall the balls-and-bins setting: m balls are independently thrown into n bins. $\mathrm{L}_{i}^{(m)}$ is the random variable indicating the number of balls in the i th bin. These are identical but not independent random variables, whose expectation is $\frac{m}{n}$.
In this lecture, we connect these random loads with Poisson random variables which are a powerful class of discrete random variables. In some sense, they form the discrete analog of the famous Gaussian random variables. Of note will be the following "approximation theorem": to argue about events involving the random load vector $\mathrm{L}^{(\vec{m})}:=\left(\mathrm{L}_{1}^{(m)}, \mathrm{L}_{2}^{(m)}, \ldots, \mathrm{L}_{n}^{(m)}\right)$, it suffices to argue about a vector of independent Poissons, which is a much easier thing to do.
- To show the connection, let us figure out the probability $\mathrm{L}_{i}^{(m)}$ is exactly r for some non-negative integer r. We see that

$$
\begin{gather*}
\operatorname{Pr}\left[\mathrm{L}_{i}^{(m)}=r\right] \quad \underbrace{\binom{m}{r}}_{\text {ways to select } r \text { balls }} \cdot \underbrace{\left(\frac{1}{n}\right)^{r}}_{\text {which all fall in bin } i} \cdot \underbrace{\left(1-\frac{1}{n}\right)^{m-r}}_{\text {and the rest don't. }} \tag{1}\\
\underbrace{\approx}_{\text {when } r \ll n} \frac{m^{r}}{r!} \cdot\left(\frac{1}{n}\right)^{r} \cdot e^{-\frac{m}{n}} \tag{2}
\end{gather*}
$$

Let's list out the approximations: we have approximated $m(m-1) \ldots(m-r+1) \approx m^{r}$, we have approximated $\left(1-\frac{1}{n}\right) \approx e^{-\frac{1}{n}}$, and $m-r \approx m$. All of these are "ok", when $n \gg 1$ and $r \ll n$. But the point is actually to show the connection with Poisson random variables which we describe next.

- Poisson Random Variables. A Poisson random variable Z with parameter μ, denoted as $Z \sim$ $\operatorname{Pois}(\mu)$, is a non-negative integer valued random variable with pdf defined as

$$
\text { For non-negative integer } r, \quad \operatorname{Pr}[Z=r]=\frac{e^{-\mu} \mu^{r}}{r!} \quad \text { (Poisson Random Variable) }
$$

Note that (2) is exactly the RHS of (Poisson Random Variable) when $\mu=\frac{m}{n}$. Let's verify a couple of things, and then look at some magical properties of these variables.

Claim 1. Z defined in (Poisson Random Variable) is a valid probability distribution.

Proof. The RHS in (Poisson Random Variable) is indeed >0 for any r. We need to check that it sums to 1. Indeed,

$$
\sum_{r=0}^{\infty} \operatorname{Pr}[Z=r]=e^{-\mu} \cdot \underbrace{\sum_{r=0}^{\infty} \frac{\mu^{r}}{r!}}_{\text {This is } e^{\mu}}=1
$$

Claim 2. The expectation of $Z \sim \operatorname{Pois}(\mu)$ is μ.

Proof.

$$
\operatorname{Exp}[Z]=e^{-\mu} \sum_{r=1}^{\infty} \frac{r \cdot \mu^{r}}{r!}=\mu e^{-\mu} \sum_{r=1}^{\infty} \frac{\mu^{r-1}}{(r-1)!}=\mu \cdot \underbrace{e^{-\mu} \sum_{s=0}^{\infty} \frac{\mu^{s}}{s!}}_{=1 \text { Claim } 1}=\mu
$$

Exercise: Calculate the variance of $Z \sim \operatorname{Pois}(\mu)$. Surprised?

Before we dive into the deeper connection with balls and bins, let's cover a powerful fact about Poisson random variables.

Theorem 1 (Sum of independent Poissons is Poisson). Let Z_{1}, \ldots, Z_{n} be n independent Poisson random variables with $Z_{i} \sim \operatorname{Pois}\left(\mu_{i}\right)$. Then, $Z:=\sum_{i=1}^{n} Z_{i}$ is $\sim \operatorname{Pois}(\mu)$ where $\mu:=\sum_{i=1}^{n} \mu_{i}$.

Proof. Let's prove this for $n=2$ and the rest follows inductively. Let $Z=Z_{1}+Z_{2}$. Then,

$$
\begin{aligned}
\operatorname{Pr}[Z=r] & =\sum_{s=0}^{r} \operatorname{Pr}\left[Z_{1}=s \wedge Z_{2}=r-s\right] \underbrace{=}_{\text {independence }} \sum_{s=0}^{r} \operatorname{Pr}\left[Z_{1}=s\right] \cdot \operatorname{Pr}\left[Z_{2}=r-s\right] \\
& =\sum_{s=0}^{r}\left(\frac{e^{-\mu_{1}} \mu_{1}^{s}}{s!}\right) \cdot\left(\frac{e^{-\mu_{2} \mu_{2}^{r-s}}}{(r-s)!}\right) \\
& =e^{-\left(\mu_{1}+\mu_{2}\right)} \sum_{s=0}^{r} \frac{\mu_{1}^{s} \mu_{2}^{r-s}}{s!(r-s)!}=\frac{e^{-\mu}}{r!} \sum_{s=0}^{r} \underbrace{\frac{r!(r-s)!}{s!}}_{\text {observe this is }\left({ }_{s}^{r}\right)} \mu_{1}^{s} \mu_{2}^{r-s} \\
& =\frac{e^{-\mu} \mu^{r}}{r!} \text { by the Binomial Theorem }
\end{aligned}
$$

This above facts allow us to prove exactly the same Chernoff bounds for sums of Poisson variables (which, recall, are very different from Bernoulli variables; in particular, these Poisson random variables are unbounded.)

Theorem 2 (Chernoff Bounds for Sums of Independent Poissons.). Let X be a Poisson random variable with parameter μ. Then for any $t>0$, we have

$$
\begin{equation*}
\operatorname{Pr}[X \geq(1+t) \mu] \leq e^{-\mu \cdot g(t)} \quad \text { and } \quad \operatorname{Pr}[X \leq(1-t) \mu] \leq e^{-\mu \cdot h(t)} \tag{3}
\end{equation*}
$$

where $g(t):=(1+t) \ln (1+t)-t$ and $h(t):=(1-t) \ln (1-t)+t$.

Remark: Consequently, using Theorem 1 one gets the following. Suppose X_{1}, \ldots, X_{n} are independent Poisson random variables and $X=\sum_{i=1}^{n} X_{i}$. Then for any $\varepsilon \in(0,1)$,

$$
\begin{equation*}
\operatorname{Pr}[X \leq(1-\varepsilon) \operatorname{Exp}[X]] \leq e^{-\frac{\varepsilon^{2} \operatorname{Exp}[X]}{2}} \tag{LT}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{P r}[X \geq(1+\varepsilon) \operatorname{Exp}[X]] \leq e^{-\frac{\varepsilon^{2} \operatorname{Exp}[X]}{3}} \tag{UT1}
\end{equation*}
$$

For the "upper tail", that is for "larger" deviations, we have when $1 \leq t \leq 4$, we have the following (changing ε to t so as to underscore that the deviation is big)

$$
\begin{equation*}
\operatorname{Pr}[X \geq(1+t) \operatorname{Exp}[X]] \leq e^{-\frac{t^{2} \operatorname{Exp}[X]}{4}} \tag{UT2}
\end{equation*}
$$

and for $t>4$ (really large), we have

$$
\begin{equation*}
\operatorname{Pr}[X \geq(1+t) \operatorname{Exp}[X]] \leq e^{-\frac{t \ln t \operatorname{Exp}[X]}{2}} \tag{UT3}
\end{equation*}
$$

- The Poisson Approximation : Connection with Balls and Bins. Till now, the connection between balls-and-bins and Poisson random variables seems a bit tenuous: (2) is after all an approximation. Is thinking of the $\mathrm{L}_{i}^{(m)}$'s as Poisson random variables correct? Is it useful? The following theorem captures this connection rigorously, and is called the Poisson Approximation.

Theorem 3 (Poisson Approximation for Balls and Bins.).
Suppose you throw m balls into n bins, each ball independently landing on a bin uniformly at random. Let \mathcal{E} be an event of interest whose indicator random variable is a function of $f\left(\mathrm{~L}_{1}^{(m)}, \ldots, \mathrm{L}_{n}^{(m)}\right)$. Consider a second experiment where we choose n independent and identical Poisson random variables $\left(Z_{1}, \ldots, Z_{n}\right)$ where each $Z_{i} \sim \operatorname{Pois}\left(\frac{m}{n}\right)$. Then,

$$
\begin{equation*}
\operatorname{Pr}\left[f\left(\mathrm{~L}_{1}^{(m)}, \ldots, \mathrm{L}_{n}^{(m)}\right)=1\right] \leq e \sqrt{m} \cdot \operatorname{Pr}\left[f\left(Z_{1}, \ldots, Z_{n}\right)=1\right] \tag{Gen-PA}
\end{equation*}
$$

and if f is a monotonically non-decreasing or non-increasing function, then in fact

$$
\operatorname{Pr}\left[f\left(\mathrm{~L}_{1}^{(m)}, \ldots, \mathrm{L}_{n}^{(m)}\right)=1\right] \leq 2 \cdot \operatorname{Pr}\left[f\left(Z_{1}, \ldots, Z_{n}\right)=1\right]
$$

(Mon-PA)
In plain English, the probability the event \mathcal{E} occurs in the balls-and-bins setting can be approximated by the probability that the same event occurs when the "loads" are independent Poisson random variables.

- Lower bound on the maximum load. It should be clear how Theorem 3 can be useful : we now have independence over the various bins which was missing in the normal balls-and-bins setting. Let us illustrate this by showing a converse to a theorem we showed in a previous lecture : when we throw n balls independently into n different bins, the maximum load is in fact $\Omega\left(\frac{\ln n}{\ln \ln n}\right)$ with high probability.

Theorem 4. For large enough n, if we throw n balls into n bins, then the probability the maximum load is $\leq \frac{\ln n}{2 \ln \ln n}$ is at most $2 e^{-\sqrt{n}}$.

Proof. Define $f\left(x_{1}, \ldots, x_{n}\right)=1$ if all $x_{i} \leq \frac{\ln n}{2 \ln \ln n}$, and 0 otherwise. Note that f is a monotonically decreasing function. We are interested in upper bounding $\operatorname{Pr}\left[f\left(\mathrm{~L}_{1}^{(n)}, \ldots, \mathrm{L}_{n}^{(n)}\right)=1\right]$. Instead, we will upper bound the probability $\operatorname{Pr}\left[f\left(Z_{1}, \ldots, Z_{n}\right)=1\right]$, where $Z_{i} \sim \operatorname{Pois}(1)$ (note that $m=n$ and therefore, $m / n=1$).
First, fix an $Z_{i} \sim \operatorname{Pois}(1)$ and let us calculate the probability this is less than $L:=\left\lfloor\frac{\ln n}{2 \ln \ln n}\right\rfloor$.

$$
\operatorname{Pr}\left[Z_{i} \leq L\right]=e^{-1} \sum_{j \leq L} \frac{1}{j!}=e^{-1} \cdot(e-\underbrace{\sum_{j>L} \frac{1}{j!}}_{\geq \frac{1}{(L+1)!}}) \leq 1-\frac{1}{e(L+1)!}
$$

Now, since the Z_{i} 's are independent, we get that $\operatorname{Pr}\left[f\left(Z_{1}, \ldots, Z_{n}\right)=1\right]=\operatorname{Pr}\left[\wedge_{i=1}^{n}\left\{Z_{i} \leq L\right\}\right]=$ $\left(\operatorname{Pr}\left[Z_{i} \leq L\right]\right)^{n}$. Using (Mon-PA), we get

$$
\begin{equation*}
\operatorname{Pr}\left[f\left(\mathrm{~L}_{1}^{(n)}, \ldots, \mathrm{L}_{n}^{(n)}\right)=1\right] \leq 2 \cdot\left(1-\frac{1}{e(L+1)!}\right)^{n} \tag{4}
\end{equation*}
$$

What remains is a calculation similar to the upper bound proof. We get that for large enough n,

$$
\ln (e(L+1)!) \leq \ln L^{L}=L \ln L \leq \frac{\ln n}{2 \ln \ln n} \cdot(\ln \ln n)=\frac{\ln n}{2} \Rightarrow e(L+1)!\leq \sqrt{n}
$$

Substituting in (4), we get

$$
\operatorname{Pr}\left[f\left(\mathrm{~L}_{1}^{(n)}, \ldots, \mathrm{L}_{n}^{(n)}\right)=1\right] \leq 2\left(1-\frac{1}{\sqrt{n}}\right)^{n} \underbrace{\leq}_{\text {Use }:(1-t) \leq e^{-t} \text { to see this }} 2 e^{-\sqrt{n}}
$$

- The Proof of the Poisson Approximation Theorem. The main observation is the following elementary lemma which states that if we throw m balls into n bins, then the distribution of the load vector is precisely the same as the distribution of n independent Poisson random variables with parameter $\mu:=$ $\frac{m}{n}$ conditioned on the event that their sum is m. That is, if we sample n independent Poisson random variables with parameter $\frac{m}{n}$ and reject anything whose sum is not m, then the resulting distribution of vectors is the same as the distribution of the loads on the n bins when m balls are thrown.

Lemma 1. For any tuple of non-negative integers $\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ such that $\sum_{i=1}^{n} m_{i}=m$,

$$
\operatorname{Pr}\left[\left(\mathrm{L}_{1}^{(m)}, \mathrm{L}_{2}^{(m)}, \ldots, \mathrm{L}_{n}^{(m)}\right)=\left(m_{1}, \ldots, m_{n}\right)\right]=\operatorname{Pr}\left[\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right)=\left(m_{1}, \ldots, m_{n}\right) \mid \sum_{i=1}^{n} Z_{i}=m\right]
$$

where each $Z_{i} \sim \operatorname{Pois}\left(\frac{m}{n}\right)$ and are mutually independent.

Proof. There is not much to this lemma rather than a calculation. Let us calculate the LHS. How many ways can we split m balls into n sets such that set i has m_{i} balls? This is precisely the multinomial coefficient, and equals

$$
\binom{m}{m_{1}, m_{2}, \ldots, m_{n}}=\frac{m!}{m_{1}!m_{2}!\cdots m_{n}!}
$$

Given such a split, what is the probability that the first specified m_{1} balls go into bin 1? The answer is $\left(\frac{1}{n}\right)^{m_{1}}$. Similarly for the other bins. And therefore,

$$
\begin{equation*}
\operatorname{Pr}\left[\left(\mathrm{L}_{1}^{(m)}, \mathrm{L}_{2}^{(m)}, \ldots, \mathrm{L}_{n}^{(m)}\right)=\left(m_{1}, \ldots, m_{n}\right)\right]=\frac{m!}{m_{1}!m_{2}!\cdots m_{n}!} \cdot\left(\frac{1}{n}\right)^{m} \tag{LHS}
\end{equation*}
$$

Now let's compute the RHS. We get,

$$
\begin{equation*}
\operatorname{Pr}\left[\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right)=\left(m_{1}, \ldots, m_{n}\right) \mid \sum_{i=1}^{n} Z_{i}=m\right]=\frac{\operatorname{Pr}\left[\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right)=\left(m_{1}, \ldots, m_{n}\right)\right]}{\sum_{i=1}^{n} Z_{i}=m} \tag{5}
\end{equation*}
$$

Note that the numerator event implies the denominator event and therefore we don't include it as an "and" in the numerator. Now, the $\operatorname{Pr}\left[Z_{i}=m_{i}\right]=\frac{e^{-\mu} \mu^{m_{i}}}{m_{i}!}$, and the Z_{i} 's are independent. Therefore,

$$
\operatorname{Pr}\left[\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right)=\left(m_{1}, \ldots, m_{n}\right)\right]=\frac{e^{-n \mu} \mu^{m}}{m_{1}!m_{2}!\cdots m_{n}!}
$$

Finally, by Theorem $1, \sum_{i=1}^{n} Z_{i}$ is also a Poisson random variable with parameter $n \mu$. Therefore, $\operatorname{Pr}\left[\sum_{i=1}^{n} Z_{i}=m\right]=\frac{e^{-n \mu}(n \mu)^{m}}{m!}$. Plugging these into (5), we get

$$
\begin{aligned}
\operatorname{Pr}\left[\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right)=\left(m_{1}, \ldots, m_{n}\right) \mid \sum_{i=1}^{n} Z_{i}=m\right] & =\frac{e^{-\mu} \mu^{m_{i}} \cdot m!}{e^{-n \mu}(n \mu)^{m} \cdot m_{1}!m_{2}!\cdots m_{n}!} \\
& =\frac{m!}{m_{1}!m_{2}!\cdots m_{n}!} \cdot\left(\frac{1}{n}\right)^{m} \\
& \underbrace{=}_{\text {(LHS) }} \operatorname{Pr}\left[\left(\mathrm{L}_{1}^{(m)}, \mathrm{L}_{2}^{(m)}, \ldots, \mathrm{L}_{n}^{(m)}\right)=\left(m_{1}, \ldots, m_{n}\right)\right]
\end{aligned}
$$

- Completing the proof. Now we can prove Theorem 3. In fact, one can establish more general statements than in (Gen-PA) and (Mon-PA). One can show that for non-negative function $f: \mathbb{Z}^{n} \rightarrow \mathbb{R}_{\geq 0}$, one has

$$
\operatorname{Exp}\left[f\left(\mathbf{L}_{1}^{(m)}, \mathbf{L}_{2}^{(m)}, \ldots, \mathrm{L}_{n}^{(m)}\right)\right] \leq e \sqrt{m} \cdot \mathbf{E x p}\left[f\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right)\right]
$$

and if f is monotone, the $e \sqrt{m}$ can be replaced by 2 . This implies the theorem since the expectation is the same as probability of occurrence for an indicator random variable. We start with the RHS:

$$
\begin{aligned}
& \operatorname{Exp}\left[f\left(Z_{1}, \ldots, Z_{n}\right)\right]=\sum_{k=0}^{\infty} \operatorname{Exp}\left[f\left(Z_{1}, \ldots, Z_{n}\right) \mid \sum_{i} Z_{i}=k\right] \cdot \operatorname{Pr}\left[\sum_{i=1}^{n} Z_{i}=k\right] \\
& \geq \operatorname{Exp}\left[f\left(Z_{1}, \ldots, Z_{n}\right) \mid \sum_{i=1}^{n} Z_{i}=m\right] \cdot \operatorname{Pr}\left[\sum_{i=1}^{n} Z_{i}=m\right] \quad \text { This uses non-negativity of } f . \\
& \underbrace{=}_{\text {Lemma } 1} \operatorname{Exp}\left[f\left(\mathrm{~L}_{1}^{(m)}, \mathrm{L}_{2}^{(m)}, \ldots, \mathrm{L}_{n}^{(m)}\right)\right] \cdot \frac{e^{-m} m^{m}}{m!}
\end{aligned}
$$

The proof follows since $m!<e \sqrt{m}(m / e)^{m}$.
To replace the $e \sqrt{m}$ by 2 for monotone functions, one is a bit more careful with the inequality. Suppose f was monotonically increasing (non-decreasing). Then,
$\sum_{k=0}^{\infty} \operatorname{Exp}\left[f\left(Z_{1}, \ldots, Z_{n}\right) \mid \sum_{i} Z_{i}=k\right] \cdot \operatorname{Pr}\left[\sum_{i=1}^{n} Z_{i}=k\right] \geq \mathbf{E x p}\left[f\left(Z_{1}, \ldots, Z_{n}\right) \mid \sum_{i=1}^{n} Z_{i}=m\right] \cdot \operatorname{Pr}\left[\sum_{i=1}^{n} Z_{i} \geq m\right]$
because if the $\sum_{i} Z_{i}$ is larger, f is only larger. And now uses another pretty fact about Poisson random variables.

Fact 1. Let $Z \sim \operatorname{Pois}(m)$ where m is an integer. Then $\operatorname{Med}(Z)=m$. That is, $\operatorname{Pr}[Z \geq m] \geq \frac{1}{2}$ and $\operatorname{Pr}[Z \leq m] \geq \frac{1}{2}$.

Plugging this fact into above gives the 2 . Do you see how to get the 2 when f is monotonically decreasing (non-increasing)?

