
CS49/249 (Randomized Algorithms), Spring 2021 : Lecture 10-11
Topic: Balls and Bins I : Birthday Paradox, Max Load, Coupon Collector

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.
Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

• This week we are going to look at a paradigmatic model which arises as an underlying motif in
many randomized algorithms : that of balls & bins. In the basic model, we have m balls which
are thrown/assigned to n bins as follows : for each ball independently we choose one of the n bins
uniformly at random and place it there. For 1 ≤ i ≤ n, we use L

(m)
i to denote the number of balls

that land in bin i. This is a random variable. The load vector/profile is the vector of random variables,
~L(m) := (L

(m)
1 , . . . , L

(m)
n ). We want to understand how the load profile “looks”: there are a bunch of

questions one can ask. Before we move on, observe three important things.

– The L
(m)
i ’s are identical. This follows from symmetry of the situation.

– The L
(m)
i ’s are not independent. After all they all sum up to m.

– The expected load Exp[L
(m)
i ] = m

n for all i.

• The Birthday Paradox. This is something many of you have probably seen before1: in a group of
around 30 individuals drawn uniformly at random, there is a > 70% chance that two of them share
the same birthday. This is called the birthday “paradox” because at first glance it seems surprising :
there are 365 possible birthdays (ignoring the leap-day), and so the chance a random person shares
my birthday is only 1

365 , then how is 30 enough? The resolution of this “paradox” is of course to take
a less ego-centric view : the claim is not that someone shares a birthday with me, but rather some two
people share a birthday.

The above is a balls-and-bins problem. There are n bins corresponding to the 365 birthdays. There
arem balls corresponding to the 30 people. We assume everyone’s birthday to be a uniform day in the
year, and thus, it corresponds to the ball landing in one of the n bins u.a.r. The question is asking : what
is the probability one of the bins has at least 2 balls? That is, what is Pr[∃1 ≤ i ≤ n : L

(30)
365 ≥ 2]?

• This calculation is elementary and not difficult. Maybe, the creativity is in coming up with the correct
event definition. We are interested in the event that some bin has ≥ 2 balls. Instead, look at the
complement event : define E , that is every bin has ≤ 1 ball. We are interested in Pr[E ] = 1−Pr[E ].
Thus, figuring out Pr[E ] will suffice. Now comes the key definition :

Ei := {The ith ball lands in a bin which previously had no balls.}

Therefore, E = E1 ∧ E2 ∧ . . . ∧ Em. Note: these events are not independent. Nevertheless, we can
always write:

Pr[E ] = Pr[E1] ·Pr[E2 | E1] ·Pr[E3 | E1 ∧ E2] · · ·Pr[Em | E1 ∧ E2 ∧ · · · ∧ Em−1] (1)

1If not, what joy! You will see it now
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Now, what is Pr
[
Et |

∧
i<t Ei

]
? If the first (t − 1) balls have led to no collisions, they all occupy

(t − 1) bins. Therefore, when the tth ball is being thrown, the number of empty bins is precisely
n− (t− 1). Therefore,

Pr

[
Et |

∧
i<t

Ei

]
=
n− (t− 1)

n
= 1− t− 1

n

Plugging this into (1), we get that

Pr[E ] =

m∏
t=1

(
1− t− 1

n

)
(2)

• Now, if m = 30 and n = 365, then you can exactly calculate Pr[E ], and then (1 − Pr[E ]) would
exactly give you the probability that two people share the same birthday. What is more interesting is
the qualitative question : if there are n bins, how big does it suffice for m to be such that we observe
a collision with probability ≥ (1− δ). Or in other words, Pr[E ] ≤ δ?

This can be answered using a very important inequality: 1 + z ≤ ez for all z. And indeed, when z is
very small, this is approximately true (as the z2, z3, . . . are ignored in the expansion of ez). We now
apply this to (2) to get

Pr[E ] =

m∏
t=1

(
1− t− 1

n

)
≤

m∏
t=1

e−( t−1
n )

The reason we took stuff to the exponent was because we had a product of a bunch of these terms.
Therefore, the product is simply a sum in the exponent. And the sum is of the first (m − 1) natural
numbers which evaluates to m(m−1)

2 . Therefore, we get

Pr[E ] ≤ e−
m(m−1)

2n

and if we want this to be ≤ δ, then choosing m ≈
√

2n ln(1/δ) suffices. If we want 50% chance
of a collision, then throwing

√
2 ln 2n ≈ 1.18

√
n many balls suffices. The important thing is the

square-root. Note that in this regime the expected load on any machine is ≈ 1√
n
� 1.

Remark: We also need to throw Ω(
√
n) balls before we see any collision. To see this, one needs

to use another analytic fact : if z ∈ (0, 0.5), then 1 − z ≥ e−z−z
2
. Plug this into (2) to get a

lower bound on Pr[E ]. Using this, for how small a constant can you prove that ifm ≤ c
√
n, then

Pr[E ] ≥ 0.99? That is, if m ≤ c
√
n balls are thrown, then the chances of a collision are less

than 1%? A highly recommended exercise.

• Maximum Load. The second important example in balls-and-bins comes when we are looking at the
case of m = n. So, n balls are thrown into n bins. Just for this setting, let us use the shorthand Li
to denote L

(n)
i . We expect Exp[Li] = 1. The question is, are all loads around this expectation. Or

can some loads be very large. In other words, how does maxi Li look like? The next claim is another
paradigmatic application of the Chernoff bound.
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Theorem 1. For large enough n, when n balls are thrown into n bins, then with probability
≥ 1− 1

n , the load on every bin is ≤ C lnn
ln lnn for some constant C.

Remark: The constant C can be optimized, and indeed, a better constant can be obtained by
a “first principles” proof. But, that is not the point of this lecture. The point is to show the
dependence on n.

Proof. Let us fix a bin i and upper bound the probability Li ≥ L for some parameter L. We want
to show how when we set L ≈ lnn

ln lnn , we get the theorem. Since the Li’s are identical (but not
independent) random variables, the same will be true for all i.

To evaluate Li, let us define n indicator random variables corresponding to the n balls. We let Xt = 1
if the tth ball lands in the bin i thus contributing to its load. Therefore,

Li :=

n∑
t=1

Xt

Note, Pr[Xt = 1] = 1
n and Xt’s are indeed independent. Chernoff bound (UT3) gives us (note:

Exp[Li] = 1),
Pr[Li ≥ (1 + L)] ≤ e−

L lnL
2 ≤︸︷︷︸

want

δn (3)

How small do we want this RHS to be? Well, for now let’s call this δn. So, we have obtained for any
i, Pr[Li ≥ (1+L)] ≤ δn. What is the probability that the maximum load is≥ (1+L)? This is where
we use the simple but ubiquitous observation : the maximum is ≥ (1 +L) if there is some load which
is ≥ (1 + L). And the “some” is upper bounded by the “sum” by the union bound2. More precisely,

Pr[max
i

Li ≥ (1 + L)] = Pr[
n∨

i=1

{Li ≥ (1 + L)}] ≤︸︷︷︸
Union Bound

n∑
i=1

Pr[Li ≥ (1 + L)] ≤︸︷︷︸
(3)

nδn

Now we know how small δn needs to be. It needs to be such that nδn ≤ 1
n . That would give the

theorem. That is, δn ≤ 1
n2 . Plugging this back into (3), we see that we need

e−
L lnL

2 ≤ 1

n2
⇒︸︷︷︸

taking natual log and manipulating

L lnL ≥ 4 lnn

So, for how small an L do we have L lnL ≥ 4 lnn? Ignore the 4 for now. Then clearly L = lnn
would suffice; but for this the LHS would have an extra multiplicative ln lnn. And this is the reason
why the correct answer is of the order L = lnn

ln lnn ; the denominator corrects for the lnL term.

Claim 1. For large enough n, if L = 8 lnn
ln lnn , then L lnL ≥ 4 lnn.

Proof. lnL = ln(C lnn) − ln(ln lnn). When n is large enough3, we have ln lnn ≥ ln ln lnn
2 . Thus,

for large enough n, we have lnL ≥ ln lnn
2 , implying L lnL ≥ 4 lnn.

2Pr[A ∨B] ≤ Pr[A] +Pr[B]
3n ≥ ee

e

suffices
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This completes the proof of the theorem with C = 8. Once again, the constants are not the best, and
once again, that is not the point.

In a later lecture, we will prove that this lnn
ln lnn is not only an upper bound but a lower bound as well.

That is, whp the maximum load is also ≥ C′ lnn
ln lnn for some other constant C ′. The qualitative message

is important : although we expect every bin to have 1 ball, there will, with high probability, some bin
with ≈ lnn

ln lnn balls. But the max load is no higher (which we saw above).

• The Coupon Collector Problem. The third example is a kind of a “flip process”. Imagine we are
throwing balls and stop only when all bins have at least one ball. How many balls do we need to
throw? Or in other words, how large does m need to be such that L(m)

i ≥ 1 for every 1 ≤ i ≤ n, with
probability say ≥ 50%?

Once again, when m = n, we expect the load of every bin to be 1. A gut instinct might be to say
when m = 2n or cn for some constant c, we would get a ball in each bin with probability 50%. This
is wrong. The reason is this : as the bins get filled up, the chance that the next ball fills an empty bin
reduces. And thus, it takes much longer than n time to fill up all the bins.

• Let us first do a slick and exact calculation of the expected time to fill all the bins. This analysis, akin
to Karp’s analysis of QUICKSORT, is something that anyone taking a randomized algorithms course
should just know. So, this is perhaps a obligatory detour we must do. But it will be worth it. Once
again, the key insight is in the definitions.

Theorem 2. The expected number of balls that needs to be thrown before every one of the n bins
has at least one ball is precisely nHn, where Hn = 1 + 1

2 + · · ·+ 1
n is the nth Harmonic number.

Proof. Let Z be the random number of balls that need to be thrown before all the bins obtain one ball.
We are going to write Z as a sum of a bunch of random variables. Let Ei be the event exactly i bins
have at least one ball. Let Zi denote the number of balls thrown between Ei−1 and Ei. That is, Zi is
the number of balls that were thrown to make the number of filled bins go up from (i − 1) to i. So,
Z1 = 1 (the first ball is always going to be in an erstwhile empty bin). Z2 = 1 if the second ball is in
the empty bin, but there is an 1

n chance that Z2 > 1. Note that

Z =

n∑
i=1

Zi ⇒ Exp[Z] =

n∑
i=1

Exp[Zi] (4)

What is Exp[Zi]? Well, how does the variable Zi look like? What is the probability Zi = 1? For
this to occur, right after the (i − 1)th bin is filled, the next ball lands in an empty bin. The number
of empty bins at that time is n − (i − 1). Therefore, the probability of that is pi = n−(i−1)

n . So,
Pr[Zi = 1] = pi.

What is the probability Zi = 2. Well, the first ball after Ei−1 missed an empty bin, and this occurs
with probability (1 − pi). But the next ball does get to an empty bin. This probability, however, is
again pi. Thus, Pr[Zi = 2] = (1 − pi)pi. And now you can see that the Zi is a geometric random
variable with parameter pi. And thus,

Exp[Zi] =
1

pi
=

n

n− (i− 1)
⇒︸︷︷︸
(4)

Exp[Z] =
n∑

i=1

n

n− i+ 1
= nHn
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