
CS49/249 (Randomized Algorithms), Spring 2021 : Lecture 5
Topic: Median of Means Proof, More General Chernoff Bounds

Disclaimer: These notes have not gone through scrutiny and in all probability contain errors.
Please discuss in Piazza/email errors to deeparnab@dartmouth.edu

• We will complete the proof of the following theorem using the Chernoff bound.

Theorem 1. [Boosting Theorem or the Median-of-Means Theorem.]

Let êst be an unbiased estimator of some statistic stat. Then, one can obtain an (ε, δ)-muliplicative
estimate of stat using K independent samples of êst, where

K =
CVar[êst](
Exp[êst]

)2 · 1ε2 · ln
(
2

δ

)
where C is some constant. Consequently, one can obtain an (ε, δ)-additive estimate of stat using
K ′ independent samples of êst, where K ′ = CVar[êst]

ε2
· ln
(
2
δ

)
Recall, last lecture from an unbiased estimator êst, we obtained an estimator est′ which was (ε, 13)-
approximate. That is,

Pr[est′ /∈ (1± ε)stat] ≤ 1

3
(1)

To obtain est′, we used s ≥ 3Var[êst]

ε2(Exp[êst])
2 independent samples of êst.

• Boosting using the median. To obtain the better estimate, we take a bunch of samples from est′, and
return the median of these estimates.

1: procedure MEDIAN-OF-MEANS:. Assumes access to an unbiased estimate êst.
2: for i = 1 to c independently do: . c is an integer ≥ 36 ln(2/δ).

3: Run BETTER-ESTIMATOR(s) with s ≥ 3Var[êst]

ε2(Exp[êst])
2 to obtain est′i.

4: Return est← median of (est′1, . . . , est
′
c).

Observation 1. The total number of independent samples of êst used is c · s ≥ 108Var[êst] ln(2/δ)

ε2(Exp[êst])
2

We claim that est is an (ε, δ)-estimate. To prove this, let us define some “bad events”. Let Xi be the
indicator random variable of the event that the ith estimate est′i is an over-estimate That is,

Xi =

{
1 if est′i ≥ (1 + ε)stat

0 otherwise

Note that Xi’s are mutually independent because all the estimates are independent. (1) also gives us
Exp[Xi] ≤ 1

3 . Define X =
∑c

i=1Xi, and thus Exp[X] ≤ c
3 . Next comes the main observation.
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Claim 1. If X < c
2 , then est is not an over-estimate, implying, Pr[est ≥ (1 + ε)stat] ≤ Pr[X ≥ c

2 ].

Proof. If less than half of the est′i’s are over-estimates, then the median is not going to be an over-
estimate.

Now the Chernoff bound gives us (using the upper bound1 c
3 ≥ Exp[X])

Pr

[
X ≥ (1 + ε)c

3

]
≤ e−

ε2c
9 ⇒︸︷︷︸

ε= 1
2

Pr
[
X ≥ c

2

]
≤ e−

c
36 ≤︸︷︷︸

since c ≥ 36 ln(2/δ)

δ

2

Thus, we get Pr[est ≥ (1 + ε)stat] ≤ δ
2 A similar argument (with “underestimate bad-events”) gives

Pr[est < (1− ε)stat] ≤ δ
2 . Therefore, Pr[est /∈ (1± ε)stat] ≤ δ. Which completes the proof.

Exercise: Do this argument.

• The General Chernoff Bound. The Chernoff bound statement stated last lecture is a corollary to the
general statement which looks a little complicated, but over time you just get used to it. Here it is.

Theorem 2 (General Chernoff: the upper tail). Let X1, X2, . . . , Xn be independent Bernoulli
random variables with each Xi ∈ {0, 1}. Let X =

∑n
i=1Xi. Then, for any t > 0, we have

Pr[X ≥ (1 + t)Exp[X]] ≤ e−Exp[X]·g(t) (2)

where g(t) := (1 + t) ln(1 + t)− t.

When t ∈ (0, 1), then one can show that g(t) ≥ t2

3 , which in turn implies (UT1) from the last lecture.
Similarly, when t ∈ [1, 4], then one can show that g(t) ≥ t2

4 implying (UT2), and when t > 4, then
one can show that g(t) ≥ t ln t

2 implying (UT3). All this can also be proved using calculus as well.
There is a similar statement for the lower tail.

Theorem 3 (General Chernoff: the lower tail). Let X1, X2, . . . , Xn be independent Bernoulli
random variables with each Xi ∈ {0, 1}. Let X =

∑n
i=1Xi. Then, for any 0 < t < 1, we have

Pr[X ≥ (1− t)Exp[X]] ≤ e−Exp[X]·g(t) (3)

where g(t) := (1− t) ln(1− t) + t.

One obtains (LT) by showing g(t) ≥ t2

2

• Proof Strategy for Theorem 2 and Theorem 3. The exact proof of the theorems are not as important
as the three main ideas behind it. I would recommend you all to understand these ideas and try to fill
the details (which requires some calculussing) yourself. If you fail, then refer to any of the bazillion
proofs either in the textbook or on the web. However, this is not the only way to prove these: see here
for five different ways.

1see remark following the statement in the previous notes
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https://bit.ly/3cEz2ul
https://bit.ly/3ug9OIC
https://bit.ly/2PTa2qb
https://bit.ly/3sEf4Wd
https://page.mi.fu-berlin.de/mulzer/pubs/chernoff.pdf


a. (Idea 1). Observe that for any parameter γ > 0, the event {X ≥ (1+ t)Exp[X]} is the same as
{eγX ≥ eγ(1+t)Exp[X]}. What does this gain us? Think of eγX as a random variable Z. Then
Z is always positive, and we can apply Markov on it. This will hold even when X could have
been negative (which doesn’t happen if all Xi’s are {0, 1}, but this allows us to prove even more
general Chernoff bounds.)

b. (Idea 2). What does Markov give? If we let θ := eγ(1+t)Exp[X] (which note is a fixed quantity
with nothing random in it), then

Pr[Z ≥ θ] ≤ Exp[Z]

θ
(4)

What is Exp[Z]? Here we use

Exp[Z] = Exp[eγX ] = Exp[eγ
∑n
i=1Xi ] = Exp[

n∏
i=1

eγXi ]

and now the kicker, by independence (which implies Exp[f(X1)f(X2)] = Exp[f(X1)]Exp[f(X2)]),

Exp[Z] =
n∏
i=1

Exp[eγXi ] (5)

c. (Idea 3). Now, we use that Xi is a Bernoulli random variable with some probability pi of being
1 and (1− pi) probability of being 0. And therefore,

Exp[eγXi ] = pie
γ − (1− pi) = 1 + pi(e

γ − 1)

And finally we use one bit of analytic trick which is again a pervasive one: we use the inequality
1 + z ≤ ez for any z, to get

Exp[eγXi ] ≤ epi(eγ−1) (6)

Now one plugs (6) into (5) to get an upper bound on Exp[Z], which is plugged into (4) giving an upper
bound on the probability as a function of γ. Then, one uses calculus to find the γ which minimizes
this quantity. And after some sweat, one proves Theorem 2. A similar strategy works for Theorem 3.
I once again recommend every one doing this exercise from this point on; it is something one needs
to do at least once in their lives!

As mentioned above, the similar strategy can actually prove Chernoff style bounds even when the
Xi’s are not {0, 1} variables. Indeed, the same bounds hold even when each Xi is a random variable
whose domain is [0, 1]. And in the proof strategy above, a little more care (analysis) is needed in (Idea
3) to figure out Exp[eγXi ]; in fact one shows the Bernoulli case is the “worst” (which, if you think
about it, makes sense as that has the maximum variance).

Learning Tidbits:

• Algorithm Design: Taking “median” of independent averages/means boosts confidence. This is
a general principle.

• Analysis: Seeing how Chernoff bounds apply : express random variable of interest as sum of
independent random variables, and then it lingers “very close” to the expectation.
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