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0.1. Introduction 5

0.1 Introduction

Long before you were introduced to calculus, you learned about straight lines and their slopes, and you
learned how to specify a straight line via a function such as f (x) = 5x. Then in AB/BC calculus, you
learned how to approximate graphs of complicated functions locally by straight lines.

What do we mean by locally? Suppose that you lived at a point A on a giant smooth curve. If you
zoom in to a tiny neighborhood of your home at A, it appears almost to be a segment of a straight line as
in Figure 1.1. (The second drawing in Figure 1.1 is a close-up view of what the detective is seeing through
his magnifying glass.) It is not until you zoom out that you realize just how hilly your world really is.

Figure 1

This is the premise of a differentiable function. At any point A, it is locally very close to being a
line, specifically, the tangent line to the curve at A.

When we study functions of two variables, the graph can be thought of as a surface sitting in 3-
dimensional space. Suppose that you live at a point A on this surface. If the function is differentiable (as
we will define later), a tiny neighborhood of your home now resembles a plane as in Figure 2.
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Figure 2

Analogous to the tangent line of a curve, there are tangent planes for surfaces. Just as we needed
to understand lines – in particular their slopes – to define the derivative of a real-valued function of one
variable, we need what are called linear functions or linear transformations to define the derivative of
functions involving more variables. In these notes, we will develop the necessary framework for these
constructions: Linear Algebra.



1. Systems of Equations

1.1 Systems of Equations, Geometry

An equation of the form ax+ by = c where a, b and c are constants is called a linear equation in two
variables. As you recall, equations of this form represent straight lines in the xy-plane. A system of linear
equations consists of two or more linear equations, e.g.,

x + y = 7
2x − 3y = −6

A solution of a system of linear equations is an ordered pair (x,y) that satisfies all the equations simul-
taneously. When we solve the system, we are finding the points of intersection of the lines represented
by the equations. A system of 2 linear equations may have exactly one solution, no solutions or infinitely
many solutions, as illustrated below:

x

y

One Solution
x

y

No Solutions
x

y

Infinitely Many Solutions

(In the third picture, the two equations represent the same line, so every point on the line is a solution.
This will happen if the two equations are equivalent, i.e., one is a multiple of the other. For example
x+2y = 3 and 2x+4y = 6 are equivalent.)

If we have a system of three linear equations in two variables, then any solution must be a point
of intersection of all three lines. Once again, the only possibilities are that the system has exactly one
solution, no solutions or infinitely many solutions. The third possibility only occurs if all three equations
are equivalent. The first two possibilities are depicted below.

x

y

No Solution
x

y

One Solution
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Pushing further, we can consider systems of equations in three variables x, y, and z. This requires us to
incorporate a third axis for the third variable, to think in three-dimensional space. Just as equations in two
variables like 2x+3y = 6 correspond to lines, equations in three variables like 2x+4y−5z = 8 correspond
to planes (as we will see later). If two such planes intersect, they do so along an entire line that contains
all points (x,y,z) that satisfy both equations, as shown below:

Figure 1.1

It could also happen that the two planes fail to intersect (if they are parallel). However, it is not possible
for two planes to intersect at a single point. (Take a minute to convince yourself of this fact.) Therefore,
systems of two equations in three variables can either have zero or infinitely many solutions.

To consider a system of three equations in three variables we must add a third equation and its respec-
tive plane. As shown below, the solution can be a single point, a single line, or nonexistent.

Figure 1.2

One can also consider systems of linear equations in more than 3 variables. While an equation in four
or more variables such as

3x1 +2x2 +5x3 +4x4 = 100

no longer has a geometric interpretation, such equations arise in practically every area.. The variables
may represent, for example, amounts of various commodities or perhaps different types of molecules with
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the coefficients being, say, the cost of each commodity or the number of hydrogen atoms in each type of
molecule.

We say a system of equations is consistent if it has at least one solution and inconsistent if it has no
solutions. In the next section, we will develop a method for checking whether a system of linear equations
is inconsistent and finding all solutions if so. A common feature of all systems of linear equations in any
number of variables is that if the system is consistent, it either has only one solution or else infinitely many
solutions.

1.2 Systems Of Equations, Algebraic Procedures

Outcomes

1. Encode systems of linear equations into augmented matrices

2. Be able to recognize when an augmented matrix is in row-echelon form and when it is in
reduced row-echelon form .

3. Understand elementary row operations and apply them to convert any augmented matrix into
reduced row-echelon form .

4. Use these tools to solve systems of linear equations.

We will introduce a widely-used systematic procedure for solving systems of linear equations. It is
especially useful when dealing with systems of linear equations involving several variables and/or several
equations. The method consists of:

1. Write down a rectangular array of numbers, called an augmented matrix, that encodes all the infor-
mation in the given system of linear equations.

2. Use “elementary row operations” to convert the augmented matrix into nicer forms called row-
echelon form and reduced row-echelon form .

3. Read off the solution of the system from the augmented matrix in row-echelon form or reduced
row-echelon form .

Outline of this section:

• In Subsection 1.2.1, we introduce augmented matrices and elementary row operations and motivate
the ideas using examples involving only two equations in two variables.

• In Subsection 1.2.2, we first define row-echelon form and reduced row-echelon form . We then
explain how to read off the solution of a system of linear equations once the augmented matrix has
been converted to one of thse forms.

• In Subsection 1.2.3, we give a systematic method for using elementary row operations in order to
reach row-echelon form and reduced row-echelon form . We then put all the steps together to solve
systems of linear equations.
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1.2.1. Augmented matrices and elementary row operations

. To motivate the technique, we begin with systems of two equations in two variables. We will review the
familiar steps for solving such systems and then see how to encode the system and how to carry out the
analogous steps on the encoded version.

Example 1.1: Solving a system of linear equations

Solve the following system of linear equations

x + y = 7
2x − 3y = −6

Solution. To begin, we can subtract twice the first equation from the second equation:

−2
(

x + y = 7
)

2x − 3y = −6
0x − 5y = −20

The system then becomes:

x + y = 7
− 5y = −20

Next, we can multiply the second equation by −1
5 to get rid of the coefficients, yielding:

x + y = 7
y = 4

Finally, we can subtract the second equation from the first:

x + y = 7
−1
(

y = 4
)

x + 0y = 3

So we end up with:

x = 3
y = 4

Thus, we have arrived at the "simple" form of the system of equations, from which it is easy to see
that the system has a unique solution (3,4).

♠

The process described above is effective, although a little burdensome especially when we have more
variables and equations. Notice that throughout the steps we kept variables and constants in the same
relative position to each other. If we abstract from this concept and keep track of coefficients only, our
work will be much easier. This is what augmented matrices provide:



1.2. Systems Of Equations, Algebraic Procedures 11

Example 1.2: Encoding systems of linear equations by augmented matrices

Given a system of linear equations

1x + 1y = 7 (E1)
2x − 3y = −6 (E2)

we create what is known as an augmented matrix that captures all the information given in the
equations: [

1 1 7
2 −3 −6

]
(R1)
(R2)

(A matrix is a rectangular array of numbers. The word “augmented” here refers to the fact that there
is an extra column separated by a vertical bar from the other columns. You can think of the bar as
representing the equal signs in the equations.)
Observe that

• Each row of the augmented matrix corresponds to one of the equations in the system.

• Each column to the left of the bar corresponds to one of the variables (in this example, x or y).
More precisely the column gives the coefficients of the corresponding variable in the various
equations.

In Example 1.1, we solved the system by a series of manipulations involving multiplying equations by
constants and adding multiples of one equation to another. Sometimes it is also convenient to reorder the
equations. The elementary row operations that we now introduce give the corresponding effect of these
manipulations on the augmented matrices.

Definition 1.3: Elementary Operations

Elementary row operations are those operations of any of the following types:

1. Interchange the order in which the rows are listed.

2. Multiply any row by a nonzero number.

3. Replace any row with itself added to a multiple of another row.

We abbreviate these elementary row operations as follows:

• Ri↔ R j denotes interchanging rows i and j. For example, R1↔ R2 denotes interchanging rows 1
and 2.

• Ri → cRi denotes multiplying row i by the real number c. For example, R2 → 5R2 means we’re
multiplying row 2 by 5.

• Ri → Ri + aR j denotes adding a multiple of row j to row i. For example, R1 → R1 + 4R2 means
we’re adding 4 times row 2 to row 1.
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Example 1.4: Elementary Operations at work

Consider the system in Example 1.1 and its augmented matrix:

x + y = 7
2x − 3y = −6

[
1 1
2 −3

∣∣∣∣ 7
−6

]
Subtracting twice the first equation from the second corresponds to the type 3 elementary row
operation R2→ R2−2R1:

x + y = 7
− 5y = −20

[
1 1 7
0 −5 −20

]
Multiplying the second equation by−1

5 is an instance of the type 2 elementary row operation (R2→
−1

5R2):

x + y = 7
y = 4

[
1 1 7
0 1 4

]
Subtracting the second equation corresponds to the type 3 elementary row operation R1→ R1−R2:

x = 3
y = 4

[
1 0 3
0 1 4

]

Observe that once we converted the augmented matrix into the form[
1 0
0 1

∣∣∣∣ a
b

]
we could then read off the solution x = a, y = b.

Now that we are familiar with augmented matrices and elementary row operations, we can try to solve
a system solely through matrix manipulation:

Example 1.5: Solving systems with matrices

Solve the following system of equations using elementary row operations:

2x + 3y = 7 (E1)
x − y = 1 (E2)

Solution. We begin by constructing the augmented matrix representation of the system of equations above:[
2 3 7
1 −1 1

]
(R1)
(R2)

Can we use elementary row operations to convert this matrix into the form
[

1 0
0 1

∣∣ a
b ]?

We first try to get the first column into the form
[

1
0
]
. We have a few options to get a 1 in the upper

left corner. We could multiply the first row by 1
2 but that will introduce fractions, which we might want

to avoid as long as possible. We could subtract the second equation from the first or we could interchange
the equations. All these ways are valid. We’ll do the third. Once we get the “1” in place, we will do a type
3 operation to get a zero in the second row:
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[
2 3
1 −1

∣∣∣∣ 7
1

]
R1↔R2−−−−→

[
1 −1
2 3

∣∣∣∣ 1
7

]
R2→R2−2R1−−−−−−−→

[
1 −1
0 5

∣∣∣∣ 1
5

]
Our next goal is to get a one in the lower right corner and then use a type 2 row operation to get a zero
above it. Continuing from where we left off:[

1 −1
0 5

∣∣∣∣ 1
5

]
R2→ 1

5 R2−−−−−→
[

1 −1
0 1

∣∣∣∣ 1
1

]
R1→R1+R2−−−−−−→

[
1 0
0 1

∣∣∣∣ 2
1

]
Converting back to equation form, we thus get x = 2, y = 1. Thus the system has a unique solution (2,1).

♠

Remark 1.6
An option in the example above is to stop applying elementary row operations when we reach the
point

[
1 −1
0 1

∣∣ 1
1

]
. You can then decode the augmented matrix to get x−y = 1 and y = 1. Substituting

y = 1 into the first of these equations yields x = 2. This step is called back substitution.

Example 1.7: Systems with no solution

Solve the following system of equations using elementary row operations.

2x + y = 7
−4x −2y = −13

Solution.
We apply elementary row operations to the corresponding augmented matrix:[

2 1
−4 −2

∣∣∣∣ 7
−13

]
R1→ 1

2 R1−−−−−→
[

1 1
2

−4 −2

∣∣∣∣ 7
2
−13

]
R2→R2+4R1−−−−−−−→

[
1 1

2
0 0

∣∣∣∣ 0
1

]
The second row implies 0x+ 0y = 1, which clearly cannot be the case. Therefore there are no
solutions to the system.

♠

Summary. In the first two examples, we were able to convert the augmented matrix to the form
[

1 0
0 1

∣∣ a
b ]

and then read off the solution x = a, y = b. In the third example, however, we instead ended up with an
augmented matrix of the form

[
1 0
0 0

∣∣ 0
1

]
, enabling us to see that there was no solution.

More generally, we want to convert any augmented matrix arising from a system of linear equations
into a nice form that will enable us either to read off the solution or else show that there are no solutions.
As the number of equations and/or variables increases, so does the variety of possible “nice” forms. In the
next subsection, we introduce the types of augmented matrices that play the role of the “nice” ones.
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1.2.2. The goal: row-echelon form or reduced row-echelon form

In this subsection, we first introduce row-echelon form and reduced row-echelon form of augmented ma-
trices and then explain how to read off the solution of a system of linear equations once the augmented
matrix is in one of these forms.

1.2.2.1. What are row-echelon form and reduced row-echelon form ?

Definition 1.8: Row-Echelon Form and Reduced Row-Echelon Form
An augmented matrix is in row-echelon form if

1. All rows that consist only of zeros are at the bottom.

2. The first nonzero entry in any nonzero row is a 1. We call it a pivot.

3. The pivot in any nonzero row is further to the right than that of the row above it.

4. In any column containing a pivot, all entries below the pivot are zeros. (The columns contain-
ing pivots are called pivot columns.)

We say the augmented matrix is in reduced row-echelon form if in addition to the conditions above,
every entry in a pivot column except for the pivot itself is zero.

The following examples describe matrices in these various forms. As an exercise, take the time to
carefully verify that they are in the specified form.

Example 1.9: Not in Row-Echelon Form

The following augmented matrices are not in row-echelon form (and therefore also not in reduced
row-echelon form ). 

0 0 0 0
1 2 3 3
0 1 0 2
0 0 0 1
0 0 0 0

 ,

 1 2 3
2 4 −6
4 0 7

 ,


0 2 3 3
1 5 0 2
7 5 0 1
0 0 1 0
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Example 1.10: Matrices in Row-Echelon Form

The following augmented matrices are in row-echelon form , but not in reduced row-echelon form .


1 2 6 5 8 2
0 0 1 2 7 3
0 0 0 0 1 1
0 0 0 0 0 0

 ,


1 3 5 4
0 1 0 7
0 0 1 0
0 0 0 1
0 0 0 0

 ,


1 0 6 4
0 1 4 3
0 0 1 2
0 0 0 0


In the first of these augmented matrices, the pivot columns are the first, third and fifth columns.
In the second one, every column is a pivot column. In the third one, the first 3 columns are pivot
columns.

Example 1.11: Matrices in Reduced Row-Echelon Form

The following augmented matrices are in reduced row-echelon form .


1 2 0 5 0 2
0 0 1 2 0 3
0 0 0 0 1 1
0 0 0 0 0 0

 ,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ,


1 0 0 4
0 1 0 3
0 0 1 2
0 0 0 0


Notice that the difference between these augmented matrices and the ones in the previous example
is that all entries above any pivot are zeros.

1.2.2.2. Reading off the solution once the augmented matrix is in row-echelon form or reduced row-
echelon form

In the next subsection, we will give an algorithm for applying elementary row operations to reduce the
original augmented matrix to row-echelon form and then to reduced row-echelon form . The reduced
row-echelon form of the augmented matrix will always be unique, but the row-echelon form is not. Once
the augmented matrix first reaches row-echelon form , it will remain in row-echelon form through the
remainder of the elementary row operations that take it to reduced row-echelon form .

In this subsection, we see how to determine the solution of the system of linear equations from the
reduced row-echelon form or, if you prefer, from the row-echelon form . As you will see, it’s faster to read
off the solution if you row reduce all the way to reduced row-echelon form . The trade-off is that it takes
more elementary row operations to reach reduced row-echelon form .

We first address the question:
Question: How many solutions does a system of linear equations have?
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Motivation
Before converting the augmented matrix of a system into row-echelon form , it is usually difficult to
tell whether the system is consistent and how many solutions it has. You can think of each equation
as placing a constraint on the values of the variables. If there are fewer constraints than variables,
you expect infinitely many solutions; if there are the same number of constraints as variables, you
expect one solution; and if there are more constraints than variables, you don’t expect any solutions.
However, these expectations don’t always hold, because the different equations may contradict each
other (making the system inconsistent even if the number of constraints is small) or some of the
equations may be duplicating others, sometimes in a non-obvious way, so that you really have
fewer constraints than at first appears.
Once the system is in echelon form, any inconsistencies show up in an obvious way and any dupli-
cations disappear into rows of zeros. Thus at that point, you can determine the number of solutions
by comparing the number of constraints (non-zero rows) to the number of variables, as indicated in
the theorem below.

Theorem 1.12: Determining the number of solutions

From an augmented matrix in row-echelon form , you can determine the number of solutions of the
linear system as follows:

(a) If the augmented matrix in row-echelon form contains a row of the form
[
0 0 . . . 0

∣∣ 1
]
,

then the system is inconsistent, i.e., it has no solutions.

(b) If the number of non-zero rows equals the number of variables and if there is no row of the
form

[
0 0 . . . 0

∣∣ 1
]
, then the system has exactly one solution.

(c) If the number of non-zero rows is less than the number of variables and if there is no row of
the form

[
0 0 . . . 0

∣∣ 1
]
, then the system has infinitely many solutions.

These are the only possibilities that can occur.

Case (a). Example 1.7 illustrates Case (a). As you saw there, a row of the form
[
0 0 . . . 0

∣∣ 1
]

gives
the contradiction 0 = 1 when you decode it back into equation form. More generally, if in the process
of carrying out elementary row operations, a row appears of the form

[
0 0 . . . 0

∣∣ c
]

where c is any
non-zero real number, then you immediately know that the system is inconsistent, since this row translates
into the equation 0 = c. Thus you can stop at that point.

We next discuss each of the cases (b) and (c) and see how to find the solutions in these cases.

Case (b). In this case, if the augmented matrix is in reduced row-echelon form , then ignoring the zero
rows, it must look like the following:[

1 0
0 1

∣∣∣∣ 2
3

]
if the number of variables is 2

1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
2
3
5

 if the number of variables is 3
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and similarly if there are more variables. (Of course the constants in the column to the right of the bar can
be anything.)

You can then immediately read off the solution; in the two cases above the solutions are (2,3) and
(2,3,5).

The following example illustrates how to read off the solution in Case(b) if the augmented matrix is in
row-echelon form but not reduced row-echelon form . One uses “back substitution” as in Remark 1.6.

Example 1.13: Back substitution

Suppose that you have a system of linear equations in the variables x,y,z and that the non-zero rows
of the augmented matrix in row-echelon form are given by1 4 1

0 1 2
0 0 1

∣∣∣∣∣∣
2
3
5

 .

Find the solution of the system of equations.

Solution. Decoding the augmented matrix back to equation form, we have:

x+4y+ z = 2

y+2z = 3

z = 5

Substitute z = 5 into the second equation to get y = −7. Then substitute y = −7, z = 5 into the first
equation, yielding x = 25. Thus the solution is (25,−7,5). ♠

Case (c).
In case (c) we will always have more columns to the left of the bar than we do non-zero rows.

Example 1.14: Infinitely many solutions

Suppose you start with a system of linear equations in three variables x,y,z and have reduced it to
the following reduced row-echelon form : [

1 0 7
0 1 5

∣∣∣∣ 2
4

]
Find the solution of the system of equations.

Solution. Decoding the augmented matrix back to equation form, we get

x+7z = 2

y+5z = 4

We can rewrite this as

x = 2−7z
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y = 4−5z

Notice that there are no restrictions on z. We call z a free variable and call x and y determined variables.
We can choose z to be any real number and will still get a solution. For example, if we set z = 2, then we
find that x = −12 and y = −6, so (−12,−6,2) is one of the solutions. Similarly, if we choose z = 1, we
get a solution (−5,−1,1).

One way of writing down all the solutions is to give a name to the arbitrarily chosen value of z, writing,
say z = t where t is allowed to be any real number. We then get the solution

(2−7t,4−5t, t).

You can also write this as

x = 2−7t, y = 4−5t, z = t where t is any real number

As we will discuss later, these solutions form a line. We call t a parameter.
♠

Example 1.15

Suppose you begin with a system of three equations in three variables x,y,z and after converting to
reduced row-echelon form , you get 1 0 0

0 0 1
0 0 0

∣∣∣∣∣∣
2
4
0


Find the solution of the system of equations.

Solution. We can ignore the row of zeros. The system becomes:

x = 2

z = 4

Here x and z are determined variables. There is no restriction on y, so y is a free variable. No matter
how y is chosen, we get a solution (2,y,4). You can write the solution this way, or you can again use a
parameter t and write it as (2, t,4), or say:

x = 2, y = t, z = 4 where t is any real number

Aside: These solutions form a line parallel to the y-axis. ♠

Recall that each column to the left of the vertical bar corresponds to one of the variables in the system
of linear equations. Notice the pattern in the examples:

• Pivot columns correspond to determined variables.

• Columns that do not contain a pivot correspond to free variables.
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Example 1.16

Suppose you begin with a system of two equations in four variables x,y,z,w and after converting to
reduced row-echelon form , you have [

1 4 0 2
0 0 1 3

∣∣∣∣ 1
2

]
Find the solution of the system of equations.

Solution.
The first and third columns are pivot columns so x and z are determined variables, while y and w are

free. The system now reads:

x+4y+2w = 1

z+3w = 2

Thus

x = 1−4y−2w

z = 2−3w

Since y and w can be anything, we write y = s, w = t and write the solution as:

x = 1−4s−2t, y = s, z = 2−3t, w = t where s and t are any real numbers

♠

1.2.3. Gauss-Jordan Elimination

In the previous subsection, we saw how to determine the solution of a system of linear equations when
it is in row-echelon form or in reduced row-echelon form . The algorithm below provides a method for
using elementary row operations to convert an augmented matrix to row-echelon form and then further to
reduced row-echelon form . We begin with the augmented matrix in its original form.
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Algorithm 1.17: Gauss-Jordan Elimination

The following algorithm, called Gauss-Jordan Elimination gives a method for applying elementary
row operations to convert any augmented matrix first to row-echelon form and then to reduced row-
echelon form .

1. Starting from the left, find the first nonzero column. This is the first pivot column, and the
position at the top of this column is the first pivot position. Use elementary row operations to
place a non-zero entry in the pivot position. (You can either make this entry a 1 at this point,
e.g., by multiplying the row by a constant, or wait until step 4.)

2. Add multiplies of the first row to the other rows in order to make all the entries in the first
pivot column below the pivot position equal to zero.

3. Ignoring the first row, repeat steps 1 and 2 with the remaining rows. Then repeat the process
ignoring the first two rows. Continue this way until there are no more non-zero rows left to
modify.

4. Divide each nonzero row by a constant if needed so that the entry in the pivot position be-
comes a 1. The matrix will then be in row-echelon form . (See Remark 1.18, item (2) for an
alternative.)

The following step will carry the matrix from row-echelon form to reduced row-echelon form .

5. Moving from right to left, use the third type of elementary row operation to create zeros in
the entries of the pivot columns that are above the pivot positions. The result will be a matrix
in reduced row-echelon form .

Remark 1.18

1. You have choices in how you carry out step one. Even if there is already a non-zero entry
in the pivot position, you may want to switch rows for example in order to get a “friendlier”
value there that will make computations easier as you continue to the next step.

2. If you are continuing all the way to reduced row-echelon form , it is okay to switch the order
of steps four and five if this makes the computations easier.

3. You should do the elementary row operations one at a time, indicating what operation you are
doing so that it is clear to the reader. The one exception to this is in Steps 2 and 5: In step 2,
it’s okay to add appropriate multiples of row 1 to each of the other rows at once in order to
get 0’s in all the entries below the pivot as long as you indicate what operations you are using.
Similarly in step 5.
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Example 1.19

Solve the following system of linear equations:

2x+3y+11z = 13
x+4y+3z = 4

5x+10y+8z = 13

Solution. The augmented matrix is given by2 3 11
1 4 3
5 10 8

∣∣∣∣∣∣
13
4

13


We apply Gauss-Jordan elimination as in the algorithm above.

1. The first pivot column is the first column of the matrix, as this is the first nonzero column from the
left. There is already a non-zero entry in that position. We could leave it that way and either multiply
the first row by 1

2 or go on to the next step and wait until step 4 to convert the 2 to a 1. However,
by interchanging the first and second rows, we will get a 1 in this pivot position without introducing
fractions. This is an attractive option, so let’s do it that way. We apply the elementary row operation
R1↔ R2 yielding

1 4 3
2 3 11
5 10 8

∣∣∣∣∣∣
4

13
13


2. Step two involves creating zeros in the entries below the first pivot position. To do this, we use the

operations R2→ R2−2R1 and R3→ R3−5R1 to get1 4 3
0 −5 5
0 −10 −7

∣∣∣∣∣∣
4
5
−7


3. Now ignore the top row and repeat steps 1 and 2 to the augmented matrix made up of the remaining

rows
[0 −5 5

0 −10 −7

∣∣ 5
−7
]

In this smaller augmented matrix, the second column is a pivot column, and
−5 is in the first pivot position. To get a one in the pivot position, we multiply the first row by −1

5 ,
yielding

[0 1 −1
0 −10 −7

∣∣ −1
−7

]
. We then apply step 2 to our smaller augmented matrix, adding 10 times

row 1 to row 2, yielding
[0 1 −1

0 0 −17

∣∣ −1
−17

]
.

Returning to the augmented matrix we obtained in 2, we have now done the following operations:1 4 3
0 −5 5
0 −10 −7

∣∣∣∣∣∣
4
5
−7

 R2→− 1
5 R2−−−−−−→

1 4 3
0 1 −1
0 −10 −7

∣∣∣∣∣∣
4
−1
−7

 R3→R3+10R2−−−−−−−−→

1 4 3
0 1 −1
0 0 −17

∣∣∣∣∣∣
4
−1
−17
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4. We now have non-zero elements in all our pivot positions now and 0’s below them. The pivots in
the first two rows are already 1’s, we just need to fix the last one using the operation R3→− 1

17R3
to get 1 4 3

0 1 −1
0 0 1

∣∣∣∣∣∣
4
−1
1


5. The augmented matrix is now in row-echelon form . To get to reduced row-echelon form , we begin

with the furthest right column that contains a pivot, in this case the third column, and clear out the
entries above it: 1 4 3

0 1 −1
0 0 1

∣∣∣∣∣∣
4
−1
1

 R1→R1−3R3−−−−−−−→
R2→R2+R3

1 4 0
0 1 0
0 0 1

∣∣∣∣∣∣
1
0
1


Now move to the next pivot column to the left (the second column) and clear out the entry above the
pivot:

R1→R1−4R2−−−−−−−→

1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
1
0
1


The augmented matrix is now in reduced row-echelon form .

We can read off the solution:
x = 1, y = 0, z = 1.

♠
As we will see later, each of the three equations in the example above is the equation of a plane. We

have now shown that the three planes intersect in one point (1,0,1).

Example 1.20

Find all points of intersection, if any, of the planes given by the equations 3x+ y+ 4z = 6 and
2x− y+6z+5.

Solution. We need to solve the system of linear equations

3x+ y+4z = 6

2x− y+6z = 5

with augmented matrix [
3 1 4
2 −1 6

∣∣∣∣ 6
5

]
We have a 3 in the first pivot position. An attractive option is to subtract row 2 from row 1 to get a 1 in

the pivot position. After that step we will continue following the Gauss-Jordan algorithm.[
3 1 4
2 −1 6

∣∣∣∣ 6
5

]
R1→R1−R2−−−−−−→

[
1 2 −2
2 −1 6

∣∣∣∣ 1
5

]
R2→R2−2R1−−−−−−−→

[
1 2 −2
0 −5 10

∣∣∣∣ 1
3

]
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R2→− 1
5 R2−−−−−−→

[
1 2 −2
0 1 −2

∣∣∣∣ 1
−3

5

]
R1→R1−2R2−−−−−−−→

[
1 0 2
0 1 −2

∣∣∣∣ 11
5
−3

5

]
The matrix is now in reduced row-echelon form. We read off:

x +2z =
11
5

so x =
11
5
−2z

y−2z =−3
5

, so y =−3
5
+2z

Here z is a free variable and x and y are determined. Writing z = t, we get the solution:

x =
11
5
−2t, y =−3

5
+2t, z = t

where t is any real number.
Aside: As we will see in Section 2.3 of the next chapter, as t varies, these solutions trace out a line.

This is consistent with the geometric discussion in Section 1.1; any pair of planes that are not parallel will
intersect in a line. ♠

1.2.4. Section Summary

• Augmented matrices give a way of encoding all the information in a system of linear equations.
Each row of the matrix corresponds to one of the equations. Each column to the left of the bar
corresponds to one of the variables. One can go back and forth between augmented matrices and
systems of linear equations.

• If we perform an elementary row operation on an augmented matrix, the system of linear equations
corresponding to the new augmented matrix has exactly the same solutions as the original system.

• Gauss-Jordan elimination gives an algorithm for converting the augmented matrix to row-echelon
form and further to reduced row-echelon form using elementary row operations.

• In row-echelon form , the first non-zero entry of each row is a one and its location is called a pivot
position. The columns containing pivot positions are called pivot columns.

• Using row-echelon form and back substitution, one can obtain the solution to the system of linear
equations. One can read off the solution more quickly using reduced row-echelon form .

• Every system of linear equations either has exactly one solution, infinitely many solutions, or no
solutions.

• If there are no solutions, a row [0 0 ... 0 | 1 ] will appear when the augmented matrix is converted to
row-echelon form .

• If there is a unique solution, the number of non-zero rows in the augmented matrix in row-echelon
form will equal the number of variables. In this case, every column to the left of the bar will be a
pivot column.
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• If there are infinitely many solutions, then the number of non-zero rows in the augmented matrix in
row-echelon form will be less than the number of variables. In this case, the variables correspond-
ing to pivot columns can be viewed as determined variables and the other variables are then free
variables. Given any choice of values for the free variables, one can then solve for the determined
variables to get a solution to the original system. We use parameters to write down all the solutions
at once.

Exercises

Exercise 1.2.1 For each of the following, indicate whether the augmented matrix is in row-echelon
form and whether it is in reduced row-echelon form .

(a)
[

1 2 0
0 1 7

]

(b)
[

1 2 0
0 2 7

]

(c)

 1 5 0 8
1 0 1 2
0 0 0 0



(d)

 1 1 0 0 4 5
0 0 1 2 0 4
0 0 0 0 1 3



Exercise 1.2.2 In each of the following, you are given the reduced row-echelon form of the augmented
matrix for a system of linear equations in the variables x,y,z. Determine whether the system of equations is
consistent and, if so, write down all solutions. (If there are infinitely many solutions, express the solutions
using parameters.)

(a)

 1 2 0 5
0 0 1 4
0 0 0 1



(b)

 1 2 0 5
0 0 1 4
0 0 0 0



(c)

 1 0 0 5
0 1 0 4
0 0 1 1
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Exercise 1.2.3 In each of the following, you are given the reduced row-echelon form of the augmented
matrix for a system of linear equations in the four variables x,y,z,w. Determine whether the system of
equations is consistent and, if so, write down all solutions. (If there are infinitely many solutions, express
the solutions using parameters.)

(a)

 1 0 0 8 5
0 1 0 3 2
0 0 1 2 4


(b)

[
1 2 0 7 5
0 0 1 2 4

]

Exercise 1.2.4 In each of the following, you are given the row-echelon form of the augmented matrix for a
system of linear equations in the variables x,y,z. Determine whether the system of equations is consistent
and, if so, use back substitution to find the solution. (If there are infinitely many solutions, express the
solutions using parameters.)

(a)

 1 2 0 5
0 1 1 4
0 0 1 1



(b)


1 2 6 5
0 1 4 4
0 0 1 1
0 0 0 0



(c)


1 2 6 5
0 1 4 4
0 0 1 1
0 0 0 1


Exercise 1.2.5 Row reduce the following matrix to obtain the row-echelon form . Then continue to obtain
the reduced row-echelon form .  0 0 −1 −1

1 1 1 0
1 1 0 −1


Exercise 1.2.6 Use augmented matrices and Gauss-Jordan elimination to find the intersection, if any, of
the lines x+3y = 1 and 4x− y = 3.

Exercise 1.2.7 Use augmented matrices and Gauss-Jordan elimination to find the intersection, if any, of
the two lines
2x+ y = 4 and 3x−2y =−1

Exercise 1.2.8 Use augmented matrices and Gauss-Jordan elimination to determine whether the three
lines, x+2y = 1,2x− y = 1, and 4x+3y = 5 have a common point of intersection. If so, find the point of
intersection.
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Exercise 1.2.9 Use augmented matrices and Gauss-Jordan elimination to determine whether the three
lines, x+2y = 1,2x− y = 1, and 4x+3y = 3 have a common point of intersection. If so, find the point of
intersection.

Exercise 1.2.10 Use augmented matrices and Gauss-Jordan elimination to determine whether the three
lines, x+2y = 4,2x− y = 0, and x+3y = 6 have a common point of intersection. If so, find the point of
intersection.

Exercise 1.2.11 Use augmented matrices and Gauss-Jordan elimination to determine whether the planes,
x+ y−3z = 2 and 2x+ y+ z = 1 intersect. If so, find the intersection.

Exercise 1.2.12 Use augmented matrices and Gauss-Jordan elimination to determine whether the three
planes, x+ y− 3z = 2, 2x+ y+ z = 1, and 3x+ 2y− 2z = 0 have a common point of intersection. If so,
find the intersection.

Exercise 1.2.13 For each of the following systems of linear equations, use augmented matrices and Gauss-
Jordan elimination to determine whether the system of equations is consistent and, if so, to find all solu-
tions. If there are infinitely many solutions, express them using parameters.

(a) 2x+ y = 4 and 3x−2y =−1

(b) 3x−6y−7z =−8, x−2y−2z =−2, and x−2y−3z =−4.

(c) 3+6y+ z = 17 and 2x+4y+ z = 13

(d) x+2y = 4 3x+6y+ z = 17 and 2x+4y+ z = 13

(e) x+2y = 4 3x+6y+ z = 17 and 2x+4y+ z = 16

(f) 9x−2y+4z =−17, 13x−3y+6z =−25, and −2x− z = 3.

(g) 7x+14y+15z = 22, 2x+4y+3z = 5, and 3x+6y+10z = 13.

(h) 3x− y+4z = 6, y+8z = 0, and −2x+ y =−4.

(i) 9x−2y+4z =−17, 13x−3y+6z =−25, and −2x− z = 3.

(j) 8x+2y+3z =−3, 8x+3y+3z =−1, and 4x+ y+3z =−9. (Suggestion: See Remark 1.18.)

(k) 3x− y−2z = 3, y−4z = 0, and −2x+ y =−2.

(l) x+2y+3z+4w = 5, 2x+4y+7z+10w = 12, and 3x+6y+10z+14w = 17.

(m) x+2y+3z+4w = 5, 2x+4y+7z+10w = 12, and 3x+6y+10z+14w = 18.

Exercise 1.2.14 Suppose a system of equations has fewer equations than variables. Will such a system
necessarily be consistent? If so, explain why and if not, give an example which is not consistent.

Exercise 1.2.15 If a system of equations has more equations than variables, can it have a solution? If so,
give an example and if not, tell why not.



2. Vectors: a Linear Viewpoint

Prerequisite 2.1

Before reading this chapter, you need to be familiar with vector addition, including the parallelo-
gram law, and also multiplication of vectors by scalars.

Notational Conventions 2.2
• Boldface letters such as u,v,w,x will always stand for vectors and non-boldface letters such as

a,b,c, t,x,y,z will stand for scalars (real numbers) or variables whose values are real numbers.

• R2 denotes 2-dimensional space, what you normally think of as the xy-plane. R3 denotes
3-dimensional space.

• When working in R3, we write i = 〈1,0,0〉, j = 〈0,1,0〉 and k = 〈0,0,1〉 as in Stewart.

• When working in R2 rather than R3, we will write i = 〈1,0〉 and j = 〈0,1〉.

2.1 Linear Combinations and Spans

Motivation
If there were no obstacles such as buildings, trees or ponds in your way, you could get anywhere in
Hanover by first walking directly east or west and then walking north or south. You can convince
yourself that you could also get wherever you wanted by walking due northeast/southwest and then
walking due east/west. Directions can be specified by vectors. If you are constrained to move only
in certain specified directions, what places can you reach? This question underlies the notions of
linear combinations and spans that we will introduce in this section.

Outcomes
• Understand linear combinations and their geometric interpretation.

• Be able to check whether a given vector is a linear combination of other specified vectors.

• Understand the concepts of span and vector span of a collection of vectors.

• Determine whether the span of a collection of a vectors is a line, a plane, or R3.

27
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2.1.1. Linear combinations of vectors

Question: Given a finite collection of vectors, what points can you reach if you start at the origin and are
constrained to move only in directions specified by these vectors?

As a warm-up, let’s first consider a single non-zero vector v. If you start from the origin and walk
arbitrarily far forwards or backwards in the direction of the vector v, you will trace out a line parallel
to v. For example, the vector v = 〈2,1〉 and the line ` through the origin parallel to v are illlustrated in
Figure 2.1. Starting from the origin and moving parallel to v we can reach any point on this line but
can never leave the line. Observe that the position vector of every point on ` is a scalar multiple tv of v.
Similarly, if w is any non-zero vector in R3, then walking arbitrarily far forwards or backwards from the
origin in the direction w, you will trace out a line in R3. Again the line consists precisely of those points
in R3 whose position vectors are multiples tw of w.

v

x

y

v

`

Figure 2.1

Next let’s consider a pair of vectors v and w in R3 (or R2). Starting from the origin, suppose we are
allowed only to walk along paths made up of line segments parallel to v and w. In Figure 2.2, we have
drawn a pair of vectors v and w and illustrated two such paths from the origin. We have labelled the
edges of the path by their displacement vectors. E.g., in the first path, the displacement vector P1P is the
vector −w. Observe that the position vector of our final point P in the first path is OP = 2v−w, while
the position vector of the final point Q on the second path is given by OQ = −3w+ 2v+ 2w+ v, which
simplifies to 3v−w.

The examples above illustrate the following proposition:

Proposition 2.3

• Starting from the origin and following paths made up of line segments parallel to two given
vectors v and w, we can reach precisely those points P whose position vectors satisfy OP =
sv+ tw, where s and t are scalars.

• Similarly, starting from the origin and following paths made up of line segments parallel to
three given vectors u, v and w, we can reach precisely those points P whose position vectors
satisfy OP = au+bv+ cw, where a, b and c are scalars.

One can make similar statements using any number of vectors. Proposition 2.3 motivates the following
definition:
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v
w
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−w
P

−3w

2v

2w

v

0

Q

Figure 2.2

Definition 2.4: Linear Combinations of Vectors
(i) Let v and w be vectors. Any vector of the form sv+ tw, where s and t are scalars, is called a
linear combination of v and w. The scalars s and t are called the coefficients of v and w in this linear
combination.
(ii) We can similarly define linear combinations of any finite collection of vectors. E.g., if u, v, and
w are vectors and a, b and c are scalars, then au+ bv+ cw is a linear combination of u, v and w.
Again the scalars a,b,c are called the coefficients.
(iii) We even say that tv is a linear combination of the vector v. (This sounds strange but it’s
convenient to be able to use the same language for any number of vectors, including a single vector.)

We emphasize that the coefficients can be any scalars, including 0. Thus the zero vector is always a
linear combination of any given collection of vectors. Similarly, v is a linear combination of v and w since
v = 1v+0w.

Example 2.5

When we write 〈2,−1,4〉 = 2i− j+ 4k, we are expressing the vector 〈2,−1,4〉 as a linear com-
bination of the standard basis vectors i, j and k. More generally, any vector 〈x,y,z〉 is a linear
combination of i, j and k since 〈x,y,z〉= xi+ yj+ zk.
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Example 2.6

Let v = 〈2,1〉 and w = 〈1,3〉. Is 〈10,15〉 a linear combination of v and w?

Solution. We are asking whether there exist scalars s and t such that

〈10,15〉= s〈2,1〉+ t〈1,3〉

Matching components, we obtain two equations:

2s+ t = 10

s+3t = 15

Solving this system of equations, we get s = 3, t = 4. So

〈10,15〉= 3〈2,1〉+4〈1,3〉

and the answer is yes!
♠

Example 2.7

Determine whether the following vectors are linear combinations of v = 〈1,0,1〉 and w = 〈1,2,3〉.
(i) 〈3,4,8〉
(ii) 〈3,4,7〉

Solution.
(i) We are asking whether there exist scalars s, t such that

〈3,4,8〉= s〈1,0,1〉+ t〈1,2,3〉

has a solution. Matching components, this gives a system of three equations in the two variables s, t:

s+ t = 3

0s+2t = 4

s+3t = 8

Method 1: Solve the first two of these equations simultaneously and check whether the solution also
satisfies the third equation. The second equation says that t = 2. Substituting into the first equation we
must have s = 1. But if we put s = 1 and t = 2 into the third equation, we get 7 = 8, which is clearly a
contradiction! So 〈3,4,8〉 is not a linear combination of v and w.
Method 2: We can check whether the system of equations has a solution by using row reduction as in
chapter I. The augmented matrix for this system is given by 1 1 3

0 2 4
1 3 8

 (2.1)
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After row reducing to reduced echelon form, we obtain: 1 0 1
0 1 2
0 0 1

 (2.2)

The last row shows us that there are no solutions.
Conclusion: 〈3,4,8〉 is not a linear combination of v and w.
(ii) If we try the same process for the vector 〈3,4,7〉, the only difference is that the third equation

above becomes s+ 3t = 7, while the first two equations remain the same. Using method 1, we see that
the solution s = 1, t = 2 to the first two equations does satisfy the third equation as well. Thus we get a
solution: s = 1, t = 2. So 〈3,4,7〉 is the linear combination

〈3,4,7〉= v+2w

of v and w. If you use method 2 instead, you will find after row reduction that you get the matrix 1 0 1
0 1 2
0 0 0

 (2.3)

♠

which again gives you the solution s = 1, t = 2.

Remark 2.8: Solving systems of 3 equations in 2 variables.

Example 2.7 illustrates two ways to determine whether a system of three linear equations in two
variables has a solution: The first way is to solve two of the equations simultaneously and then test
whether your solution – if there is one – satisfies the third equation.
A second way is to use row reduction as in the previous chapter.

2.1.2. Span of a set of vectors

We define the span of a set of vectors geometrically as the collection of all points that you can reach from
the origin if you are constrained to walk only in the directions of the specified vectors. More precisely:

Definition 2.9: Span of a set of a vectors

Let A = {v1, . . . ,vk} be a finite collection of vectors in R3 (or R2). The span of A, denoted Span(A)
or Span(v1, . . . ,vk), is defined as follows:

• If A = {0}, then Span(A) = {0}. (We will not discuss this uninteresting case further.)

• Otherwise, Span(A) is the set of all points in R3 (respectively, R2) that can be connected to
the origin by a path made up of line segments each of which is parallel to a non-zero vector
in A.
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Proposition 2.3 tells us that we can reach precisely those points whose position vectors are linear
combinations of the vectors in A. This motivates the definition of vector span:

Definition 2.10: Vector span of a set of vectors

Let A = {v1, . . . ,vk} be a finite collection of vectors. The vector span of A, which we will denote
by V Span(A) or V Span(v1, . . . ,vk), is the collection of all vectors that are linear combinations of
v1, . . . ,vk.

As a corollary of Proposition 2.3, we have:

Corollary 2.11

A point P is in Span(A) if and only if its position vector OP is in V Span(A).

Example 2.12

Let A = {v,w} where v = 〈1,0,1〉 and w = 〈1,2,3〉. In Example 2.7, we saw that the vector 〈3,4,7〉
is a linear combination of v and w but that 〈3,4,8〉 is not. Thus 〈3,4,7〉 belongs to V Span(A) but
〈3,4,8〉 does not.
It then follows from Corollary 2.11 that the point (3,4,7) belongs to Span(A) but the point (3,4,8)
does not.

Question: What types of geometric objects might we get by taking the spans of finite sets of vectors?
As we have seen, if we can move only in one direction, then the points we can access form a line.

Thus:

Example 2.13: The span of a single vector

Let A consist of a single vector non-zero vector v. Then V Span(v) consists of all vectors of the
form tv with t any scalar, and

Span(v) is the line through the origin parallel to v.

For a specific example, if v = 〈2,1〉, then Span(v) is the line in Figure 2.1. From the vector v, we
can see that the slope of this line is 1

2 and thus the Cartesian equation of the line is given by y = x
2 .
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Example 2.14

• Let A = {i, j,k}.Since every vector in R3 is a linear combination xi+ yj+ zk of the standard
basis vectors and thus lies in V Span(i, j,k), Corollary 2.11 tells us that

Span(i, j,k) = R3.

• Let A = {i,k}. Then V Span(i,k) consists of all vectors si+ tk = 〈s,0, t〉 with s, t arbitrary
scalars and

Span(i,k) is the xz-plane.

• Working in R2 rather than R3, we similarly see that Span(i, j) = R2 where i and j are the
standard basis vectors of R2

Thus far, we’ve seen examples of spans that are lines, planes, and R3. As we will see below, these are
all the possibilities (assuming A 6= {0}).

Let’s consider the span of a pair of non-parallel vectors in R2. As a warm-up, Figure 2.3 is a picture
of R2 with dots at all points (m,n) where m and n are integers. We have labeled these points by their
position vectors mi+ nj. The dots form the corners of squares that tile the plane and give us families of
horizontal and vertical lines. As usual, once you have all the integer points marked, it’s then easy to find
the approximate location of any other point. Figure 2.3 looks like the road map of a city in which all the
streets are perfectly straight and each goes either north/south or east/west. The fact that Span(i, j) = R2 is
of course the familiar fact that you can reach any point by first going east/west and then north/south.

Figure 2.3

Now let’s consider the span of another pair of vectors, say

v = 〈2,1〉 and w = 〈1,3〉.

In Figure 2.4, we have drawn a picture analogous to that in Figure 2.3 but using the vectors v and w in
place of i and j. The dots now are at all the points with position vectors mv+ nw where m and n are
integers. The parallelogram law for addition of vectors enables us to tile the plane with parallelograms
whose corners are these dots as shown in the picture.
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Figure 2.4

We again have two families of parallel lines. You might think of Figure 2.4 as a grid of streets in a city,
where now the streets no longer intersect at right angles. Let’s temporarily refer to the lines in the grid
parallel to v and w as v streets and w streets.

In Figure 2.5, we have randomly chosen a point P in the plane R2.

Question: Can we get to P from the origin 0 by walking only parallel to the “city streets”?

Answer: Yes! We have shown such a path in the drawing. We first walk “downhill” (i.e. towards the
left) along the v street from 0 until we find ourselves at a point Q such that QP is parallel to w. The point
Q has position vector−2.7v. (The value -2.7 is an estimate here.) We now head up to P along the segment
QP, thus achieving our goal. In vector language, the displacement vector vector QP is given by 1.6w.
(Again the 1.6 is an estimate based on the picture.) By the parallelogram law, we see that the position
vector OP of P satisfies

OP =−2.7v+1.6w.
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Figure 2.5

Try to convince yourself now that you can get to every point in the plane by walking only parallel to
the “city streets”, i.e., parallel to v and w. Thus Span(v,w) = R2.

More generally, we have:

Theorem 2.15: Span of any collection of vectors in R2

Let A be a finite set of vectors in R2.

1. If A consists only of the zero vector, then Span(A) = {0}.

2. If all the vectors in A are parallel to each other (and at least one of them is non-zero), then
Span(A) is the line through the origin parallel to the vectors in A.

3. If A contains at least two vectors that aren’t parallel to each other, then Span(A) = R2.

Thus the span of any finite collection of vectors in R2 is either the origin, a line through the origin,
or all of R2.

To see (2), note that if all the vectors in A are parallel and you are constrained to move only parallel to
vectors in A, then you have only one direction in which to move.

The most interesting part of the theorem is item (3), which tells us that the directions given by any pair
of non-parallel vectors are enough to enable us to reach every point in the plane R2.

Definition 2.16

• The origin, lines through the origin, and R2 are called subspaces of R2.

• Similarly, the origin, lines through the origin, planes through the origin, and R3 are called
subspaces of R3.

• The dimension of a subspace is 0 for the origin, 1 for a line, 2 for a plane and 3 for R3.
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Theorem 2.15 says that the span of any finite collection of vectors in R2 is a subspace of R2. We next
give an analogous theorem for R3. We first need a definition.

Definition 2.17

A collection of vectors in R3 is said to be coplanar if they all lie in a single plane.
Note: When we say that the vectors all “lie” in a single plane, we really mean that they are all
parallel to a single plane. Recall that vectors have length and direction but not position.

Note. Any set consisting of only 2 vectors must be coplanar, since you can always find a plane parallel to
two vectors.

Theorem 2.18: Span of any collection of vectors in R3

Let A be any finite set of vectors in R3. Then Span(A) is a subspace of R3 given as follows:

1. If A consists only of the zero vector, then Span(A) = {0}.

2. If all the vectors in A are parallel to each other (and at least one of them is non-zero), then
Span(A) is the line through the origin parallel to the vectors in A.

3. If the vectors in A are coplanar and not all of them are parallel, then Span(A) is the plane
through the origin parallel to the vectors in A.

4. If the vectors in A are not coplanar, then Span(A) = R3.

Remark 2.19
You may have learned in high school geometry that given two lines `1 and `2 that intersect in a
point, there is a unique plane P containing `1 and `2. Now suppose instead that you are given two
non-parallel vectors v and w. Then Span(v) and Span(w) are lines through the origin and thus there
is a unique plane through the origin containing these lines. This is precisely the plane Span(v,w)
and is the unique plane through the origin parallel to v and w.

Example 2.20

Let A = {u,k} where u = 1
2 i+ 1

2 j = 〈1
2 , 1

2 ,0〉 and k = 〈0,0,1〉. The vectors are not parallel but must
be coplanar (since there are only two of them). Thus Span(A) is the plane P through the origin
parallel to these vectors. This plane is illustrated in Figure 2.6. As we did in Figures 2.3 and 2.4,
we have put dots at the points that correspond to all linear combinations mu+ nk where m and
n are integers. Convince yourself that the position vector of every point on this plane is a linear
combination su+ tk (as guaranteed by the theorem).
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Figure 2.6

Item (4) in Theorem 2.18 tells us that we can reach any point in R3 by paths consisting of segments
parallel to just 3 vectors u,v,w, provided that the 3 given vectors are not coplanar. The three vectors
form the edges of a parallelopiped in R3 as in Figure 2.7. We denote this parallelopiped by Par(u,v,w).
In analogy with what we did in Figures 2.3 and 2.4 in dimension 2, we can tile R3 by copies of this
parallelopiped. The corners of the parallelopipeds in the tiling have position vectors mu+nv+ pw, where
m, n and p are integers. The position vector of every point in the parallelopiped shown in Figure 2.7 are
of the form au+bv+ cw, with 0≤ a,b,c≤ 1.

Figure 2.7

Proposition 2.21: Checking whether vectors are coplanar

Let A be a set of vectors containing at least two vectors that are not parallel to each other. Pick out
two such vectors v and w. The set A is coplanar if and only if all the remaining vectors are linear
combinations of v and w.

Proof. Since v and w are not parallel but are coplanar, we have that Span(v,w) is a plane P through the
origin. To see whether A is coplanar, we need to check whether the remaining vectors are parallel to P .
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Now note that any vector u parallel to P is the position vector of a point on P . (To see this, position u at
the origin. Since the origin is in P and u is parallel to P , its tip lies in P as well.) By Corollary 2.11, it
follows that a vector is parallel to P if and only if it is a linear combination of v and w. The proposition
follows. ♠

Determining whether Span(A) is a line, a plane, or R3

(We are assuming here that A 6= {0}.)

1. Check by inspection whether all the vectors in A are parallel. If so, you know Span(A) is a line
through the origin. If not, continue to next step.

2. Use Proposition 2.21 to determine whether A is coplanar. If so, then Span(A) is a plane through the
origin. If not, Span(A) = R3.

Example 2.22: Determining the type of span

• Let A = {〈3,4,7〉, 〈1,0,1〉, 〈1,2,3〉}. The vectors in A are not all parallel, so Span(A) is at
least 2-dimensional. To check whether the vectors are coplanar, let’s check whether the first
vector is a linear combination of the last two. We already did this computation in Example 2.7
and found that the answer is yes. Thus the vectors are coplanar and the span is a plane through
the origin.

• Let A = {〈3,4,8〉, 〈1,0,1〉, 〈1,2,3〉}. Again the vectors are not parallel. In Example 2.7, we
saw that the first vector is not a linear combination of the other two vectors. Thus the vectors
are not coplanar and Span(A) = R3.

2.1.3. Section Summary

Let A be a finite set of vectors.

• You can check whether a vector is a linear combination of the vectors in A by solving a system of
linear equations.

• Span(A) consists of all points that can be reached from the origin by moving only in the directions
specified by the vectors in A.

• V Span(A) consists of all vectors that are linear combinations of the vectors in A.

• A point P is in Span(A) if and only if the position vector OP is in V Span(A).

• Span(A) is a line through the origin if all the vectors in A are parallel (and not all zero).

• Span(A) is a plane through the origin if the vectors in A are coplanar but not all parallel.

• Span(A) = R3 if A is not coplanar.

• To check whether A is coplanar, pick out two vectors in A that aren’t parallel and check whether the
other vectors are linear combinations of these two.
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Exercises

Exercise 2.1.1 Let u = 〈1,2,4〉, v = 〈3,1,5〉 and w = 〈2,4,0〉. Evaluate the linear combination 2u−v+
4w.

Exercise 2.1.2 Draw pictures analogous to those in Figure 2.2 to illustrate the following linear combina-
tions:

(a) 2〈1,1〉−〈3,5〉

(b) −2〈1,4〉+3〈1,5〉

Exercise 2.1.3 For each of the following, you are given a pair of vectors v and w in R2 and a third vector
u. Either express u explicitly as a linear combination sv+ tw by finding the coefficients s and t or else
show that u is not a linear combination of v and w.

(a) v = 〈1,1〉, w = 〈3,5〉, u = 〈−1,−3〉

(b) v = 〈1,4〉, w = 〈−2,−8〉, u = 〈−1,−3〉

(c) v = 〈1,4〉, w = 〈1,5〉, u = 〈2.5,12〉

(d) v = 〈1,1,1〉, w = 〈2,1,4〉, u = 〈5,4,7〉

(e) v = 〈1,1,1〉, w = 〈2,1,4〉, u = 〈0,1,3〉

Exercise 2.1.4 For each of the following, you are given a pair of vectors v and w in R3 and a third vector
u. Determine whether u lies in V Span(v,w).

(a) v = 〈1,2,4〉, w = 〈2,0,3〉, u = 〈4,4,8〉

(b) v = 〈1,2,4〉, w = 〈2,0,3〉, u = 〈7,6,18〉

(c) v = 〈1,4,1〉, w = 〈−2,−8,0〉, u = 〈5,20,3〉

(d) v = 〈1,4,1〉, w = 〈−2,−8,0〉, u = 〈−3,−12,−3〉

Exercise 2.1.5

a) Check whether 〈5,6,10〉 lies in V Span(〈1,1,2〉, 〈2,3,1〉).

b) Find all values of z so that the vector 〈5,6,z〉 lies in V Span(〈1,1,2〉, 〈2,3,1〉). (Before computing,
look at your work in part (a) so that you don’t repeat computations you’ve already done.)

Exercise 2.1.6 For each of the following, find the Cartesian equation of the line Span(v). (See Exam-
ple 2.13.)

(a) v = 〈5,6〉
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(b) v = 〈0,4〉

(c) v = 〈4,0〉

(d) v = 〈1,−7〉

Exercise 2.1.7 For each of the following pairs of vectors, draw a parallelogram tiling analogous to that in
Figure 2.4. Please include all the points mv+nw where m and n are integers with −2≤ m,n≤ 3. Label
at least ten of these points, including 0,v,w. Your labelled points should include ones with both positive
and negative values for each of m and n. (You don’t have to label every point, as that becomes tedious!)

(a) v = 〈1,1〉, w = 〈−1,2〉

(b) v = 〈1,−1〉, w = 〈−1,2〉

(c) v = 〈−1,−1〉, w = 〈1,−2〉

Exercise 2.1.8 For each of the pairs v,w in Exercise 2.1.7, express the vector 〈0,4〉 as a linear combination
of v and w. Illustrate your answer by drawing a path in your tiling analogous to that in Figure 2.5. (You
can use the picture from Exercise 2.1.7; you do not have to redraw the tiling.)

Exercise 2.1.9 Determine whether each of the following triples of vectors in R3 is coplanar.

(a) 〈1,1,2〉, 〈2,0,1〉, 〈−4,2,1〉

(b) 〈3,1,2〉, 〈−1,2,1〉, 〈1,5,4〉

(c) 〈3,1,2〉, 〈−1,2,1〉, 〈2,−4,−2〉

(d) 〈3,1,2〉, 〈−1,2,1〉, 〈1,4,4〉

Exercise 2.1.10 For each of the following, you are given a set A of vectors in R3. Determine whether
Span(A) is a line through the origin, a plane through the origin, or R3.

(a) A = {〈1,1,2〉, 〈2,0,1〉, 〈−4,−4,−8〉}

(b) A = {〈3,1,2〉, 〈0,0,0〉, 〈1,5,4〉}

(c) A = {〈1,1,1〉, 〈2,0,1〉, 〈1,−1,1〉}

(d) A = {〈1,1,1〉, 〈2,0,1〉, 〈1,−1,0〉}

(e) A = {〈1,1,1〉, 〈2,0,1〉, 〈2,2,2〉〈−6,0,−3〉}

Exercise 2.1.11 True or false: Span(〈1,2,1〉) = Span(〈1,2,1〉,〈3,6,3〉)? Explain

Exercise 2.1.12 True or false: Span(〈1,2〉, 〈1,1〉) = Span(〈17,2〉, 〈0,1〉)? Explain.

Exercise 2.1.13 Figure 2.8 illustrates the point P whose position vector is the sum 〈2,1〉 + 〈0,1〉. Note
that we haven’t drawn the actual position vector OP but rather illustrated a path to P by adding the two
vectors.
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(a) Draw a copy of Figure 2.8. Then on the same picture, draw the analogous path to the point Q whose
position vector is 〈2,1〉+ 〈

√
2

2 ,
√

2
2 〉. (Of course, the first segment of the path is already drawn. Just

fill in the second segment and indicate the point Q.)

(b) In the same picture, draw analogous paths to the points whose position vectors are 〈2,1〉+〈cos(θ), sin(θ)〉
for each of the following choices of θ : π

3 , 2π

3 , 7π

6 .

(c) As θ varies over the entire interval [0,2π], the resulting points fill out a familiar curve. Draw this
curve and describe it in words. (If you find it helpful, you may want to go back to part (b) and make
some additional choices of θ as well.)

Figure 2.8

Exercise 2.1.14 Describe the curve traced out by the points with position vectors 〈2,5〉+〈3cos(θ),3sin(θ)〉
as θ varies over the interval [0,2π]. Then write down the Cartesian equation of this curve.

Exercise 2.1.15 Let v = 〈1,1〉, let P be the point (2,3) and let OP be the position vector of the point P.

(a) Using a single coordinate chart, draw the points with position vectors OP, OP± v, OP± 2v, and
OP± 1

2v. (Don’t draw the actual position vectors but rather draw the path to each point given by
the indicated linear combination, just as you did in Exercise 4.4. ) What do you notice?

(b) As t varies over all values in R, the points with position vectors OP+ tv fill out a familiar curve.
You sketched 7 points on this curve in part (a). In the same picture, draw the rest of the curve. (By
“familiar curve” here, we mean things like circles, straight lines, parabolas, ...)

(c) Find the Cartesian equation (i.e., an equation involving x and y, no vectors) of the curve in part (b).

Exercise 2.1.16 Follow the directions of Exercise 2.1.15 but with v = 〈2,−1〉 and P = (0,1).
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2.2 Using a basis to provide a map of a subspace

Motivation

You are used to labeling points in R2 by their (x,y)-coordinates. How do we label points on arbitrary
lines and planes? In this section, we will consider lines and planes through the origin.

Outcomes
• Understand the concepts of “spanning set”, “linear independence”, and “basis”.

• Given a spanning set, find a basis.

• Use a basis to label points on lines and planes.

• Understand the concept of “parameters”.

• Determine whether a point lies on a plane. If so, find its parameters with respect to a basis for
the plane.

Recall that lines through the origin, planes through the origin and R3 are all the subspaces of R3 of
dimension at least one. (We are saying dimension at least one to avoid the trivial subspace {0}.)

We saw in the previous section that:

• To span a line ` through the origin, we need just a single non-zero vector parallel to `.

• To span a plane P through the origin, we need just two vectors parallel to P but not parallel to
each other.

• To span R3 we just need three vectors that aren’t coplanar.

We emphasize that the dimension of Span(A) can never be greater than the number of vectors in A.

Definition 2.23

Let S be a subspace of R3 of dimension at least one.

• We will say that a finite set A of vectors is a spanning set for S if Span(A) = S.

• We say that A is a basis for S (also called a minimal spanning set) if Span(A) = S and the
number of vectors in A equals the dimension of S. (Note that the second condition says that
A is linearly independent.)

Thus we have:

• A basis for a line through the origin consists of a single vector parallel to the line.

• A basis for a plane through the origin consists of 2 vectors that are both parallel to the plane but not
parallel to each other.
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• A basis for R3 consists of 3 vectors that are not coplanar.

Proposition 2.24

Every spanning set for a subspace S contains a basis for S. In other words, if the spanning set A is
linearly dependent, then we can remove some vectors from A to obtain a basis.

Of course, we need to be careful which vectors we remove!

Example 2.25

For each of the following, you are given 3 vectors v1, v2 and v3. Let A = {v1,v2,v3}. Determine
whether Span(A) is a line, a plane or R3. Then indicate whether A is linearly independent and find
a basis for Span(A).

1. v1 = 〈1,0,1〉, v2 = 〈2,0,2〉, v3 = 〈−4,0,−4〉

2. v1 = 〈1,0,1〉, v2 = 〈1,2,3〉, v3 = 〈3,4,7〉

3. v1 = 〈1,0,1〉, v2 = 〈1,2,3〉, v3 = 〈3,4,8〉

4. v1 = 〈1,0,1〉, v2 = 〈1,2,3〉, v3 = 〈2,4,6〉.

s

Solution.

1. The 3 vectors are parallel so Span(A) is a line. A is linearly dependent. Any one of the vectors by
itself forms a basis for this line.

2. In Example 2.22, we saw that these 3 vectors are coplanar, so Span(A) is a plane P and A is linearly
dependent. If we remove any one of the vectors from A, we get a pair of vectors that are parallel to
P and not to each other. Thus any two of these vectors forms a basis for P .

3. We saw in Example 2.22 that these 3 vectors are not coplanar. Thus Span(A) = R3, so A is already
a basis and A is linearly independent.. (If we remove any vector, we get a smaller span.)

4. Here v2 and v3 are parallel and thus A is coplanar. Span(A) is a plane and A is a linearly dependent
set. We can remove either of v2 or v3 to obtain a basis. (On the other hand, we can’t remove v1 as
the span would then shrink to a line.)

♠
Let S be a subspace of dimension at least one. Corollary 2.11 tells us that if A is any spanning set for

S, then the position vector of any point in S is a linear combination of the the vectors in A. E.g., suppose
P is a plane through and A = {v1,v2,v3} is a spanning set for P . Then if P is a point in P , we know
that the equation

OP = av1 +bv2 + cv3 (2.4)

has a solution. But in fact, when the spanning set A is not minimal as in this case (A has 3 vectors and P
is only 2-dimensional), Equation (2.4) actually has infinitely many solutions, i.e., there are infinitely many
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Figure 2.9

different ways of expressing OP as a linear combination of the vectors in A. In contrast, if we take a basis
{v,w} for the plane, then the equation OP = sv+ tw has a unique solution s, t. To summarize:

Theorem 2.26
If A is a basis for the subspace S, then the position vector for each point in S can be written in exactly
one way as a linear combination of the vectors in A. In other words, the coefficients in the linear
combination are unique determined.

You are used to labeling points in R by their x coordinate, and points in R2 by coordinates (x,y). But
how do we label points on other lines and planes? Theorem 2.26 gives us a way:

(a) Labeling points on a line ` through the origin.

Choose a basis A = {v} for ` by choosing a non-zero vector parallel v to `. Then the position vector
of each point P on ` is given by tv, and we have a one-to-one correspondence between points on `
and values of t. Figure 2.9 shows a line `, a choice of v and the corresponding labeling of the points
on the line. You can now identify points on the line by their label t. One way to view the labels
is the way we view mile markers on a highway. Another point of view is to imagine that you are
walking along the line and the label t tells you the point that you pass through at time t. Of course
the labeling depends on the initial choice of v, just as labeling points on a highway in terms of miles
from, say, a state border differs from labeling them in terms of kilometers from the border.

(b) Labeling points on a plane P through the origin. Choose a basis A = {v,w} for P by choosing
two vectors that are parallel to P but not parallel to each other. Theorem 2.26 tells us that for each
point P on P , there is exactly one pair of scalars s, t such that OP = sv+ tw. Thus we can label
each point by the corresponding scalars s, t. (Again, if you choose a different basis, you will get a
different label so you need to specify the basis that you are using.)
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Notation 2.27
In linear algebra, the scalar t in (a) and the ordered pair of scalars s, t in (b) are called the coordinates
of P with respect to the basis A. In preparation for the next section, we will instead refer to them as
the parameters for the point P with respect to the basis A. (If you have made clear what basis you
are using, you can just say ‘parameters’ for P”.)

Example 2.28

• Let P by the xy-plane and let A be the standard basis {i, j}. Let P be the point whose x,y
coordinates are (x0,y0). We have OP = x0i+ y0j. Thus x0,y0 are the parameters for P with
respect to the standard basis. (This is the reason that the language “coordinates for P with
respect to the basis” is used in linear algebra.)

• Let A be the basis for R2 given by A = {〈2,1〉,〈1,3〉}. Figure 2.4 in the previous section
illustrates how this basis gives a “road map”. If we imagine that your house is located at a
point P, the parameters s, t for P can be viewed as your home address; they uniquely identify
the location of your home. For example the point P in Figure 2.5 in the previous section has
parameters −2.7,1.6 since OP =−2.7v+1.6w.

Example 2.29: Determining whether a point lies on a plane

Let P be the plane through the origin parallel to the vectors v = 〈1,0,1〉 and w = 〈1,1,2〉. Observe
that A = {v,w} is a basis for P .
Let P = (5,3,8). Determine whether P lies on the plane P . If it does, find its parameters with
respect to the basis A.

Solution. Since OP = 〈5,3,8〉, the point P lies on P if and only if the equation

〈5,3,8〉= s〈1,0,1〉+ t〈1,1,2〉

has a solution. Since A is a basis, we know that the solution s, t (if it exists) is unique and these will be the
parameters for P.

We need to solve the system:

s+ t = 5

0s+ t = 3

s+2t = 8

We leave it to the reader to solve the system (using either method in Example 2.7). It does have a solution
s = 2, t = 3. Thus P lies on the plane and its parameters with respect to the basis A are 2,3. ♠

As the example above illustrates, you can check whether a point P lies on a given plane P through
0 by choosing a basis for P and checking whether the position vector OP is a linear combination of the
basis vectors. (Note: You could instead use a spanning set that’s not a basis, but this will result in a system
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of more equations than if you use a basis. Moreover if P lies on the plane, you will then get infinitely
many solutions instead of just one so you won’t be able to use the solution to label the point.)

Definition 2.30: Linear independence

We say that a finite set A of vectors is linearly independent if the number of vectors in A is equal to
the dimension of Span(A). Otherwise we say that the set A of vectors is linearly dependent.

Thus:

• A set consisting of a single non-zero vector is linearly independent, since Span(A) is a line and thus
1-dimensional.

• A set A containing two vectors is linearly independent if Span(A) is a plane, equivalently if the
vectors are not parallel. It is linearly dependent if the two vectors are parallel.

• A set A consisting of 3 vectors is linearly independent if Span(A) =R3, equivalently, the vectors are
not coplanar. It is linearly dependent if the vectors are coplanar.

2.2.1. Section Summary

• A set A of vectors is linearly independent if the number of vectors in A is equal to the dimension of
Span(A).

• A basis for a subspace S is a linearly independent set of vectors that spans S.

• A basis for a line through 0 consists of a single vector parallel to the line. A basis for a plane through
0 consists of two vectors parallel to the plane but not parallel to each other. A basis for R3 consists
of 3 vectors that aren’t coplanar.

• Every spanning set for a subspace S contains a basis for S.

• If A is a basis for a subspace, the position vector of every point in the subspace can be expressed in
exactly one way as a linear combination of the basis elements. Thus if, say, A = {v,w} is a basis for
a plane P , then every point P in P has position vector OP = sv+ tw and we can use the pair s, t as
a label for the point P. We call s, t parameters.

• To check whether a point lies on a given plane P through 0, choose a basis and check whether the
position vector OP is a linear combination of the basis vectors.
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Exercises

Exercise 2.2.1 Check whether each of the following sets of vectors is linearly independent or dependent:

(a) A = {〈3,1〉, 〈−6,−2〉}.

(b) A = {〈3,1〉, 〈−6,2〉}.

(c) A = {〈3,1,4〉, 〈3,1,5〉}.

(d) A = {〈3,1,1〉, 〈1,2,1〉, 〈9,8,5〉}.

(e) A = {〈3,1,1〉, 〈1,2,1〉, 〈9,8,0〉}.

(f) A = {〈3,1,1〉, 〈−6,−2,−2〉, 〈9,8,0〉}.

Exercise 2.2.2 For each of the sets A in Exercise 2.2.1, find a basis for Span(A) consisting of vectors from
A. (In some cases, there may not be a unique answer. You just need to give one choice of basis.)

Exercise 2.2.3 For each of the following points P in R2 or R3, find the parameters for the point P with
respect to the given basis B of R2, respectively R3.

(a) P = (1,1), B = {〈4,5〉, 〈2,3〉}

(b) P = (0,0,−2), B = {〈2,0,1〉, 〈1,2,−1〉, 〈3,2,2〉}

Exercise 2.2.4 True or false: Let v and w be any two non-zero vectors in R3 that aren’t parallel. Then
Span(v,w) = Span(v+2w,w). Explain your answer.

Exercise 2.2.5 Answer the same question as in Exercise 2.2.4, but now assume that v and w are parallel.
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2.3 Vector Equations of Lines and Planes

Motivation
In the previous section, we saw how to label points on lines and planes through the origin using a
basis.
In this section, we will explore how to represent arbitrary lines and planes, not just those that pass
through the origin, via vectors. In the process we will see our first examples of vector-valued
functions.

Outcomes
• Understand the concepts of vector and parametric equations of lines and planes.

• Be able to write down the parametric equations of lines and planes when enough information
is given to determine the line or plane.

• Given lines in R3, check whether they intersect in a single point, are parallel or skew.

2.3.1. Lines in R2 or R3

Given a point P and a direction specified by a vector v, there is a unique line through P parallel to v.
The vector v is called a direction vector for the line. (Aside: if the line ` passes through the orgin, then
as discussed in the previous section, a basis for ` consists of a direction vector for `. The word “basis”,
however, is not used for lines that do not pass through the origin.)

As a first example, consider the line ` through the point P = (1,3) parallel to the vector v = 〈2,1〉.
Figure 2.10 below is a copy of Figure 2.4 that appeared in Section 2.1. The vector w= 〈1,3〉 is the position
vector of the point P. As you move from (1,3) (the point labelled w in Figure 2.4) in the directions ±v,
you follow the line in Figure 2.10 passing through the points labelled with their position vectors w± v,
w±2v, etc. Observe that the direction vector of every point Q on the line ` is of the form

OQ = w+ tv = 〈1,3〉+ t〈2,1〉. (2.5)

Just as in the previous section, we can think of each value of t as a label for the corresponding point Q
on the line. The line ` is redrawn in Figure 2.11. A few points corresponding to integer values of t are
labelled. The front of the car (driving uphill) is approximately at the point corresponding to t = 3

2 , i.e., the
point (1+ 3

2(2),3+
3
2(1)) = (4, 9

2).
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Figure 2.10
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Figure 2.11

There are a couple ways to give an equation for this line. Since we are working in R2, we can express
it with a Cartesian equation. From the direction vector v = 〈2,1〉, we can read off that the slope (rise/run)
is 1

2 . So the Cartesian equation is y−3 = 1
2(x−1) or x−2y =−5. In contrast, however, lines in R3 cannot

be expressed by a single Cartesian equation.
A second way to give an equation for this line – a method that will work in 3 dimensions as well – is

to take the point of view of the driver of the car. Imagining that t denotes time and that the driver is at the
point corresponding to 〈1,3〉+ t〈2,1〉 at time t, we can write down a vector-valued function that gives the
position vector of the car at time t:

r(t) = 〈1,3〉+ t〈2,1〉. (2.6)

This function gives an equation for the line in the sense that as t varies, r(t) traces out the line. The
function inputs a “label” t and outputs the point on the line with that label. An equation of this form is
called a vector equation for the line. The variable t is often called a parameter.

There are lots of different ways to give a vector equation for the same line. The driver of the car in the
picture was at point (1,3) at time 0. A different driver or pedestrian might start at a different point on the
line at time 0 and might go faster or slower than the car depicted or might go downhill rather than uphill.
So (1,3) can be replaced by the position vector of any point on the line and the choice of direction vector
〈2,1〉 can be replaced by any non-zero scalar multiple of 〈2,1〉.

A final way to represent this line (just a slight variation on the vector equation method) is by what are
called parametric equations. We know from the Equation (2.6) that a point (x,y) is on the line if and only
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if its position vector satisfies 〈x,y〉= 〈1,3〉+ t〈2,1〉 for some t. So we can write

x = 1+2t, y = 3+ t (2.7)

The pair of equations (2.7) are called parametric equations of the line. Again, as t varies, the parametric
equations yield all points (x,y) on the line.

The method we just used to represent the line in Figure 2.11 works equally well for any line in R2 or
R3. We summarize by describing lines in R3: (Of course, you can replace R3 by R2.)

2.31: Vector and parametric equations of lines in R3

Given a point P = (x0,y0,z0) in R3 and a non-zero vector v = 〈a,b,c〉, the vector equation of the
line in R3 through P and parallel to v is given by

r(t) = OP+ tv = 〈x0,y0,z0〉+ t〈a,b,c〉.

Simplifying the right hand side, we get r(t) = 〈x0+at,y0+bt,z0+ct〉. The line can also be written
in parametric equations as

x = x0 +at, y = y0 +bt, z = z0 + ct

Example 2.32: Line through two points

One of the axioms of Euclidean geometry is that there is a unique line through any two distinct
points. Find the vector and parametric equations of the line through the points P : (1,2,3) and
Q : (2,1,5).
Solution. The vector PQ = 〈1,−1,2〉 from P to Q is parallel to the line, so we can use it for our
direction vector. Thus we get the vector equation:

r(t) = 〈1,2,3〉+ t〈1,−1,2〉

and parametric equations
x = 1+ t, y = 2− t, z = 3+2t

♠

In R2, any pair of lines that are not parallel must intersect in a point. In R3, there are more possibilities:
a pair of lines `1 and `2 could:

• be parallel

• intersect in a single point

• be skew

Skew means that the lines are not coplanar. Skew lines do not intersect but they are also not parallel. For
example, let `1 be the x-axis and let `2 be any line lying in the plane z = 1 that isn’t parallel to the x-axis.
Then `1 and `2 are skew. See Figure 2.12 for a drawing of a pair of skew lines. Two randomly chosen
lines are most likely to be skew.
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Figure 2.12

To compare two lines, you’ll probably want to begin by looking at their direction vectors to see if
they are parallel. If you find that they are parallel, it’s important to check whether the two lines really are
different lines or whether they coincide. Remember, there are many different vector/parametric equations
for the same line!
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Example 2.33: Compare two lines

Compare the following two lines:

`1 : r(t) = 〈1,2,3〉+ t〈1,−1,2〉

`2 : q(t) = 〈3,1,4〉+ t〈−3,3,−6〉

Solution. Since the direction vectors 〈1,−1,2〉 and 〈−3,3,−6〉 are parallel, the two lines are paral-
lel. We give two methods for checking whether the lines coincide:
Method 1. Pick a point on `2, say (3,1,4) and see whether it lies on `1. If it does, then the two lines
will be the same since parallel lines that intersect must coincide. If it doesn’t, then the lines must be
different.
The point (3,1,4) lies on the first line if and only if there is some value of t such that r(t) = 〈3,1,4〉.
In other words, 3 = 1+ t, 1 = 2− t, and 4 = 3+2t. The first equation says t = 2, which contradicts
the other equations. So the two lines are parallel but not the same line.
Method 2. The point P1 : (1,2,3) lies on `1 and the point P2 : (3,1,4) lies on `2. If `1 is actually
equal to `2, then both P1 and P2 lie on `1, so the displacement vector P1P2 must be parallel to this
line. But P1P2 = 〈2,−1,1〉 is not parallel to the direction vector 〈1,−1,2〉. So `1 6= `2. ♠

Next suppose that you are comparing two lines `1 and `2 expressed by vector-valued functions r(t)
and q(t), respectively (or expressed in parametric form), and you have already established that they are
not parallel.

Caution! If you think of t as time, then the vector equations for the two lines each give the position of, say,
a pedestrian walking along the line at time t. If you walk down Main Street passing by the intersection
with Wheelock Street at 3:00, and your friend walks along Wheelock passing this intersection at 5:00,
you’re not going to see each other! Thus, when we ask whether the lines intersect, we are not asking
whether there is some time t such that r(t) and q(t) are equal, but rather whether there is some t1 and
some possibly different t2 such that r(t1) = q(t2). To check, you first need to change the name of one of
the parameters as in the following example.
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Example 2.34: Intersect or skew?

Determine whether the following two lines are parallel, whether they intersect in a point (if so, find
the point) or are skew:

`1 : r(t) = 〈1,5,3〉+ t〈1,−1,2〉

`2 : q(t) = 〈3,1,4〉+ t〈1,1,5〉

Solution. First check that the direction vectors are not parallel (left to the reader).
Following the “caution” above, we rename the second parameter s:

`2 : q(s) = 〈3,1,4〉+ s〈1,1,5〉

Now, we set r(t) = q(s) and see if there is a solution. This gives us 3 equations in 2 variables:

1+ t = 3+ s, 5− t = 1+ s, 3+2t = 4+5s

or simplifying:
s− t =−2, s+ t = 4, 5s−2t =−1

The unique solution of the first two equations is s = 1, t = 3. Since this satisfies the third equation
as well, we have r(3) = q(1), so the two lines do intersect. To find the point of intersection, plug
t = 3 into the equation for `1 to get the point (4,2,9). (It’s a good idea to check your work by
verifying that q(1) also gives (4,2,9).) ♠

2.3.2. Vector equations of planes

In Section 2.2 we saw that any plane through the orgin can be expressed as Span(v,w) where v,w are
linearly independent vectors that are both parallel to the plane and we labelled the point with position
vector sv+ tw by the parameters s, t. Analogous to the vector equation for a line, we obtain a vector-
valued function, this time with two independent variables s and t for this plane:

r(s, t) = sv+ tw.

Again this vector equation inputs a label (the pair of parameters) and outputs the corresponding point on
the plane. As s and t vary, the points with position vectors r(s, t) fill up the plane.
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Figure 2.13

More generally, we can specify any plane – not necessarily passing through the origin – by specifying
(i) a linearly independent pair of vectors v,w parallel to the plane and (ii) a point P on the plane. The
vectors v,w tell us that the plane is parallel to Span(v,w); the point P situates the plane in space. We can
reach any point in the plane by starting at P and then moving parallel to Span(v,w). Thus, as illustrated in
Figure 2.13, the position vectors of all points on the plane can be expressed as OP+ sv+ tw. We obtain a
vector equation of the plane:

r(s, t) = OP+ sv+ tw (2.8)

If P = (x0,y0,z0), v = 〈a1,b1,c1〉 and w = 〈a2,b2,c2〉, we get

r(s, t) = 〈x0,y0,z0〉+ s〈a1,b1,c1〉+ t〈a2,b2,c2〉.

Writing 〈x,y,z〉= r(s, t), we obtain parametric equations for the plane:

x = x0 +a1s+a2t, y = y0 +b1s+b2t, z = z0 + c1s+ c2t (2.9)

As with lines, there are infinitely many different vector equations of the same plane, since there are
infinitely many ways to choose P on the plane and to choose the vectors v,w.
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Example 2.35: Plane through three points

Any three distinct non-collinear points determine a unique plane. (“Non-collinear” means that they
don’t all lie on a single line.)
Find vector and parametric equations of the plane containing the points P1 : (1,2,0), P2 : (3,1,5)
and P3 : (2,0,1).
Solution. Since the points P1,P2,P3 all lie on the plane, the displacement vectors P1P2 and P1P3 are
parallel to the plane. Let v = P1P2 = 〈2,−1,5〉 and w = P1P3 = 〈1,−2,1〉. Using P1 as our initial
point on the plane, we then obtain the vector equation

r(s, t) = 〈1,2,0〉+ s〈2,−1,5〉+ t〈1,−2,1〉

and parametric equations

x = 1+2s+ t, y = 2− s−2t, z = 5s+ t

♠

Preview of Things to Come 2.36

The vector equations of lines and planes through the origin are examples of what are called linear
transformations, the topic of a later chapter of these notes.

Exercises

Exercise 2.3.1 Write down a vector equation for each of the following lines in R3:

(a) the line through the point (1,5,6) and parallel to the vector 〈4,7,8〉

(b) the line through the point (1,4,7) and parallel to the y-axis

(c) the line containing the points (1,4,5) and (2,1,6)

(d) the line containing the points (3,1,2) and (1,7,5)

(e) the line through the point (1,2,3) and parallel to the line whose parametric equations are x = 5+2t,
y = 4+3t, z = 8− t

Exercise 2.3.2 Write down parametric equations of each of the lines in Exercise 2.3.1

Exercise 2.3.3 Find the Cartesian equation of the line in R2 represented by the given vector equation:

(a) r(t) = t〈3,8〉

(b) r(t) = 〈4,1〉+ t〈3,5〉
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(c) r(t) = 〈1+7t,2− t〉

Exercise 2.3.4 Give a vector equation representing each of the following lines in R2:

(a) 3x+4y = 8

(b) 5x− y = 10

(c) y = 5

(d) x = 2

Exercise 2.3.5 Let t measure time in minutes and let units in the (x,y)-plane be measured in feet (so the
vectors i and j are each one foot long). Suppose that a sluggish turtle is at the point (1,1) at time 0 and
crawls along a straight line ` parallel to the vector 〈3,4〉 at the constant speed of one foot per minute.
Write down a vector equation for this line, where r(t) gives the turtle’s position at time t. (Thus you must
make a careful choice of direction vector.)

Exercise 2.3.6 Suppose that a rabbit hops along the same line ` as the turtle in Exercise 2.3.5, starting
from the same point but going at the constant speed of 100 feet per minute. Write down a vector equation
representing the rabbit’s position at time t.

Exercise 2.3.7 Suppose that, instead of starting at the same point as the turtle, the rabbit in Exercise 2.3.6
is at some point on ` behind the turtle at time 0 and, hopping at the constant speed of 100 feet per minute,
overtakes the turtle one minute later. Write down a vector equation representing the rabbit’s position at
time t.

Exercise 2.3.8 Give a vector equation for each of the following planes:

(a) The plane through the point (1,2,1) and parallel to both 〈5,1,6〉 and 〈3,3,2〉

(b) The plane containing the points (1,2,1), (0,5,2) and (3,2,4)

(c) The plane containing the points (1,0,1), (4,5,8) and (3,2,4)

(d) The plane through the point (1,2,1) and parallel to the xy-plane

(e) The plane through the point (1,2,1) and parallel to the xz-plane

Exercise 2.3.9 Write down parametric equations for each of the planes in Exercise 2.3.8.





3. Introduction to Matrices and Matrix Arithmetic

Motivation
Matrices give us a way of organizing and representing information in an array. Matrix operations
such as addition and multiplication are defined in a way that makes matrices powerful tools in
business, economics, and in virtually every area of science. In mathematics, matrices as well as
vectors are the foundations for linear algebra and will enable us to define derivatives later in the
course.

3.1 Matrices

A matrix is a rectangular array of numbers such as 1 2 3 4
5 2 8 7
6 −9 1 2

 (3.1)

The size of a matrix is defined as m×n where m is the number of rows and n is the number of columns.
Thus the matrix above is a 3×4 matrix. When specifying the size of a matrix, you always list the number
of rows before the number of columns.

There are several matrix sizes with special names:

• A matrix with the same number of rows as columns is called a square matrix, e..g,
[

2 4
1 5

]
• A 1× n matrix (so only one row) such as

[
2 4 1

]
is called a row matrix. Often it is useful to

identify row matrices with vectors. Thus it is also referred to as a row vector.

• Similarly, an m×1 matrix (so only one column) is called a column matrix or column vector.

Notation 3.1: Entries, Rows, Columns

• The entry in row i, column j of a matrix A is referred to as the (i, j)-entry of A and will
usually be denoted Ai j. We may deviate from this double-subscript notation when there is
only a single row or column.

• We will denote the ith row of A by Rowi(A) and the jth column by Col j(A).

59
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Example 3.2

Let

A =

[
1 4 3
5 2 8

]
Then A is a 2×3 matrix. Examples of its entries are A12 = 4, A21 = 5, etc. An example of a row is

Row2(A) =
[
5 2 8

]
and an example of a column is

Col3(A) =
[

3
8

]

Definition 3.3: Equality of Matrices

Let A and B be two m× n matrices. Then A = B means that the matrices have the same size and
Ai j = Bi j for all i, j.

Thus [
0 1
3 2

]
6=
[

1 0
2 3

]
because their corresponding entries are not identical.

3.2 Matrix Operations

3.2.1. Addition of Matrices

We can add two matrices A and B if and only if they are the same size. We then add the corresponding
entries, i.e.,

(A+B)i j = Ai j +Bi j.

For example,[
1 2 3
1 0 4

]
+

[
5 2 3
−6 2 1

]
=

[
1+5 2+2 3+3

1+−6 0+2 4+1

]
=

[
6 4 6
−5 2 5

]
Addition of matrices obeys very much the same properties as normal addition with numbers.
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Proposition 3.4: Properties of Matrix Addition

Let A,B and C be m×n matrices. Then, the following properties hold.

• Commutative Law of Addition
A+B = B+A (3.2)

• Associative Law of Addition

(A+B)+C = A+(B+C) (3.3)

• Existence of an Additive Identity

There exists an m×n zero matrix 0 such that
A+0 = A (3.4)

(The zero matrix has all entries equal to zero.)

• Existence of an Additive Inverse

There exists a matrix −A such that
A+(−A) = 0 (3.5)

We may refer to the m×n zero matrix just as the zero matrix if the size is understood. You can easily
check that the additive inverse −A is obtained by simply changing the signs of all the entries. E.g.,

if A =

[
5 2 −8
1 −4 2

]
then −A =

[
−5 −2 8
−1 4 −2

]

3.2.2. Scalar Multiplication of Matrices

To multiply a matrix by a scalar, we multiply each entry by the scalar. For example,

3

 1 2 3 4
5 2 8 7
6 −9 1 2

=

 3 6 9 12
15 6 24 21
18 −27 3 6





62 Introduction to Matrices and Matrix Arithmetic

Proposition 3.5: Properties of Scalar Multiplication

Let A,B be matrices, and k, p be scalars. Then, the following properties hold.

• Distributive Law over Matrix Addition

k (A+B) = kA+ kB

• Distributive Law over Scalar Addition

(k+ p)A = kA+ pA

• Associative Law for Scalar Multiplication

k (pA) = (kp)A

• Rule for Multiplication by 1
1A = A

The proof of this proposition is left to the reader.

3.2.3. Multiplication of Matrices

While the definitions of addition and scalar multiplication of matrices probably appeared very natural,
multiplication is not defined in the way one would first expect, i.e., we don’t simply multiply corresponding
entries. The reason we don’t do this is that it doesn’t seem to be useful for anything. It’s easy to see why
the notions defined in the previous subsections of addition and multiplication by scalars are important. In
business applications, for example, you might want to chart daily information about different products,
where the entries in the various rows and columns correspond to different data such as production costs,
etc. When adding two such matrices, you get the combined costs, etc. over a two-day period.

The initially strange looking notion of multiplication defined below has powerful applications.
First, what size matrices can we multiply?

In order to form the product AB, the number of columns of A must equal the number of rows of B.
The resulting matrix AB that we will define below will have the same number of rows as A and the same
number of columns as B.

(m×
these must match!

n̂) (n × p) = m× p

Given an m×n matrix A and an n× p matrix B, how do we define AB?
We first address the case that B is a column matrix.
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3.2.3.1. Multiplying a matrix times a column vector

Before writing down the formal definition, we illustrate with an example:

[
1 2 3
4 5 6

] 7
8
9

= 7
[

1
4

]
+8
[

2
5

]
+9
[

3
6

]
=

[
50

122

]
(3.6)

Observe that the right hand side is a linear combination of the columns of A. The entries of B become
the coefficients in the linear combination.

Definition 3.6: Product of a matrix and a column vector

If A is an m× n matrix and B =


b1
b2
...

bn

 is an n× 1 column matrix, then the product AB is defined

to be the linear combination of the columns of A with coefficients specified by the entries of B. In
other words,

AB = b1 Col1(A)+b2 Col2(A)+ · · ·+bn Coln(A) =
n

∑
j=1

b j Col j(A).

Example 3.7

Let

A =

2 1
4 5
8 2

 and B =

[
3
−1

]
.

Express AB as a linear combination of the columns of A and then compute it.

Solution.

AB = 3

2
4
8

−
1

5
2

=

 5
7

22


♠

If we view the columns of A as vectors, then Definition 3.6 says that the column vector AB lies in the
span of the columns of A. This fact will play an important role when we study linear transformations.

Observation 3.8
Looking carefully at Definition 3.6 or the examples above, you’ll see that the entry in the ith row
of the product AB is the dot product of the ith row of A with the column matrix B (viewing both as
vectors). E.g., in Equation 3.6, the first entry 50 of the product is (1)(7)+ 2(8)+ 3(9), which is
precisely 〈1,2,3〉 · 〈7,8,9〉, the dot product of the row Row1(A) with the column vector B. Similarly
〈4,5,6〉 · 〈7,8,9〉= 122, the second entry.



64 Introduction to Matrices and Matrix Arithmetic

When B has more that one column, we multiply A by each column of B to get the columns of the
product:

Definition 3.9: Multiplication of Two Matrices

Let A be an m×n matrix and B an n× p matrix. The product AB is defined to be the m× p matrix
whose jth column is given by ACol j(B). (We know how to compute ACol j(B) by Definition 3.6.)

Putting together Observation 3.8 and Definition 3.9, we obtain what you will probably find to be an
easier way to compute matrix products:

Proposition 3.10: The i j-entry of the product AB

Let A be an m×n matrix and B an n× p matrix. Then AB is the m× p matrix whose i j-entry is the
dot product of the ith row of A with the jth column of B:

(AB)i j = Rowi(A) · Col j(B) =
n

∑
k=1

AikBk j.

Example 3.11 2 1
3 4
5 0

[1 5
6 2

]
=

〈2,1〉 · 〈1,6〉 〈2,1〉 · 〈5,2〉
〈3,4〉 · 〈1,6〉 〈3,4〉 · 〈5,2〉
〈5,0〉 · 〈1,6〉 〈5,0〉 · 〈5,2〉

=

 8 12
27 23
5 25



Example 3.12: The Identity Matrix

For each n, there is an n× n square matrix In (usually just denoted I if n is understood) that plays
a similar role in matrix multiplication as the number one does in scalar multiplication. This matrix
has 1s going down what is called the main diagonal (the diagonal from the upper left corner to the
bottom right corner) and 0’s everywhere else. E.g.,

I3 =

1 0 0
0 1 0
0 0 1

 .

We recommend that you do a few examples to convince yourself that for every m×n matrix A and
every n× p matrix B, we have AIn = A and InB = B. The matrix In is called the n×n identity matrix.

Definition 3.9 has a consequence that will play an important role when we discuss linear transforma-
tions:

Theorem 3.13: Columns of the product

Let A and B be any two matrices of the correct size so that AB is defined. Then each column of AB
is a linear combination of the columns of A.
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We give an example of an application of matrix multiplication:

Example 3.14: Systems of linear equations

Consider the system of equations:
2x+3y+5z = 10

4x+ y+7z = 6

Letting

A =

[
2 3 5
4 1 7

]
, X =

x
y
z

 and B =

[
10
6

]
we get

AX = x
[

2
4

]
+ y
[

3
1

]
+ z
[

5
7

]
=

[
2x+3y+5z
4x+ y+7z

]
so the system of equations above can be expressed as

AX = B.

3.2.4. Properties of Matrix Multiplication

While matrix multiplication has a number of nice properties, it is not commutative. Depending on the size
of the matrices, one of AB or BA might be defined and the other not. Moreover, even if both AB and BA
are defined, they may not be equal.

Example 3.15: Matrix Multiplication is Not Commutative

Let A =

[
1 2
3 4

]
and B =

[
0 1
1 0

]
. Then

AB =

[
1 2
3 4

][
0 1
1 0

]
=

[
2 1
4 3

]
and

BA =

[
0 1
1 0

][
1 2
3 4

]
=

[
3 4
1 2

]
Therefore, AB 6= BA.

While most matrices don’t commute with each other, there are some pairs of matrices that do happen
to commute. In particular, every n×n matrix A commutes with the identity matrix In since AIn = A = InA
as in Example 3.12.

On the other hand, although it’s not immediately obvious, matrix multiplication is associative (the
fourth property in the proposition below). This property will be very important for us when we study
linear transformations.
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Proposition 3.16: Properties of Matrix Multiplication

The following properties hold for matrices A,B, and C and for scalars k: (By this we mean that if
the matrices are the correct size so that one side of the equation is defined, then the other side makes
sense as well and the two sides are equal.)

A(kB) = k(AB) = (kA)B (3.7)

(A+B)C = AC+BC (3.8)

A(B+C) = AB+AC (3.9)

A(BC) = (AB)C (3.10)

3.2.5. The Transpose

One final concept that we will use occasionally:

Definition 3.17: Transpose

The transpose of an m×n matrix A, denoted AT , is the n×m matrix obtained by switching the rows
with the columns.

For example, 1 4
3 1
2 6

T

=

[
1 3 2
4 1 6

]

3.2.6. Section Summary

• You can add matrices of the same size by adding their entries. The familiar properties of addition
hold.

• To multiply a matrix by a scalar, multiply each entry by the scalar.

• To form the product AB, the number of columns of A must equal the number of rows of B.

• If B is a column matrix and A is a matrix of the correct size so that AB is defined, then the product
AB is a column matrix formed by taking a linear combination of the columns of A. The entries of B
are the coefficients of the linear combination.

• Matrix multiplication is not commutative.

• Properties of matrix multiplication that will be especially important for us later are associativity
(AB)C = A(BC), the distributive law A(B+C) = AB+AC and the fact that scalars pull out: A(kB) =
kAB.
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• The transpose AT is the matrix obtained by switching the rows of A with the columns.

Exercises

Exercise 3.2.1 For the following pairs of matrices, determine if the sum A+B is defined. If so, find the
sum.

(a) A =

[
1 0
0 1

]
,B =

[
0 1
1 0

]
(b) A =

[
2 1 2
1 1 0

]
,B =

[
−1 0 3

0 1 4

]

(c) A =

 1 0
−2 3

4 2

 ,B =

[
2 7 −1
0 3 4

]

Exercise 3.2.2 For each matrix A, find the matrix −A such that A+(−A) = 0.

(a) A =

[
1 2
2 1

]
(b) A =

[
−2 3

0 2

]

(c) A =

 0 1 2
1 −1 3
4 2 0


Exercise 3.2.3 For each matrix A, find −2A,0A, and 3A.

(a) A =

[
1 2
2 1

]
(b) A =

[
−2 3

0 2

]

(c) A =

 0 1 2
1 −1 3
4 2 0


Exercise 3.2.4 Using only the properties given in Proposition 3.4 and Proposition 3.5 show 0A = 0. Here
the 0 on the left is the scalar 0 and the 0 on the right is the zero matrix of appropriate size.

Exercise 3.2.5 Using only the properties given in Proposition 3.4 and Proposition 3.5, as well as previous
problems show (−1)A =−A.

Exercise 3.2.6 For each of the following, express the product AB as a linear combination of the columns
of A and then compute it. (See Example 3.7.)
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(a) A =

[
3 1 5
2 1 4

]
, B =

2
3
1


(b) A =

[
3 1
2 4

]
, B =

[
2
−2

]

(c) A =

3 1
4 2
7 1

, B =

[
5
1

]

Exercise 3.2.7 Consider the matrices A =

[
1 2 3
2 1 7

]
, B =

[
3 −1 2
−3 2 1

]
, C =

[
1 2
3 1

]
,

D =

[
−1 2

2 −3

]
, E =

[
2
3

]
.

Find the following if possible. If it is not possible explain why.

(a) −3A

(b) 3B−A

(c) AC

(d) CB

(e) AE

(f) EA

Exercise 3.2.8 Consider the matrices A =

 1 2
3 2
1 −1

 , B =

[
2 −5 2
−3 2 1

]
, C =

[
1 2
5 0

]
,

D =

[
−1 1

4 −3

]
, E =

[
1
3

]
Find the following if possible. If it is not possible explain why.

(a) −3A

(b) 3B−A

(c) AC

(d) CA

(e) AE

(f) EA

(g) BE
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(h) DE

Exercise 3.2.9 Let A, B and C be the matrices in Exercise 3.2.8.

(a) Compute (BA)C and B(AC), and check that the associative law is satisfied.

(b) Compute A(5C) and 5(AC) and check that they are equal as asserted in Equation 3.7.

Exercise 3.2.10 Let A =

 1 1
−2 −1

1 2

, B =

[
1 −1 −2
2 1 −2

]
, and C =

 1 1 −3
−1 2 0
−3 −1 0

 . Find the

following if possible.

(a) AB

(b) BA

(c) AC

(d) CA

(e) CB

(f) BC

Exercise 3.2.11 Let A =

[
a b
c d

]
be a 2×2 matrix. Compute det(A) and det(AT ). Are they the same?

Exercise 3.2.12 Write the system
x−2y+3z = 5

2x+ y+7z = 10
x+4y = 12

in the form AX = B where A and B are appropriate matrices and X =
[ x

y
z

]
.

Exercise 3.2.13 Let

A =

1 2
2 1
3 5


(a) Let

B =

 4
5

11


Does there exist a column matrix X =

[
x
y

]
such that AX = B? If so, find X. (You will need to solve a

system of linear equations.)
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(b) Express 〈4,5,11〉 as a linear combination of 〈1,2,3〉 and 〈2,1,5〉. (You don’t need to do a computa-
tion. Look at what you did in part (a)!)

(c) Let

B =

 4
5

12


Does there exist X =

[
x
y

]
such that AX = B? Is 〈4,5,12〉 in Span(〈1,2,3〉, 〈2,1,5〉?

Exercise 3.2.14 Let

A =

1 2
2 4
3 6


(a) Compute A

[
3
2

]
.

(b) Viewing the columns of A as vectors, are they linearly independent or linearly dependent? What is
Span(〈1,2,3〉, 〈2,4,6〉)?

(c) Find all column matrices B for which the equation A
[

x
y

]
= B has a solution

[
x
y

]
.

Exercise 3.2.15 Let A =

[
−1 −1

3 3

]
. Find all 2×2 matrices, B such that AB = 0.

Exercise 3.2.16 Let X =
[
−1 −1 1

]
and Y =

[
0 1 2

]
. Find XTY and XY T if possible.

Exercise 3.2.17 Let A =

[
1 2
3 4

]
,B =

[
1 2
3 k

]
. Is it possible to choose k such that AB = BA? If so,

what should k equal?

Exercise 3.2.18 Let A =

[
1 2
3 4

]
,B =

[
1 2
1 k

]
. Is it possible to choose k such that AB = BA? If so,

what should k equal?

Exercise 3.2.19 Find 2×2 matrices, A, B, and C such that A 6= 0,C 6= B, but AC = AB.

Exercise 3.2.20 Give an example of matrices (of any size), A,B,C such that B 6=C, A 6= 0, and yet AB =
AC.

Exercise 3.2.21 Find 2×2 matrices A and B such that A 6= 0 and B 6= 0 but AB = 0.

Exercise 3.2.22 Give an example of matrices (of any size), A,B such that A 6= 0 and B 6= 0 but AB = 0.

Exercise 3.2.23 Find 2×2 matrices A and B such that A 6= 0 and B 6= 0 with AB 6= BA.
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Exercise 3.2.24 A matrix A is called idempotent if A2 = A. Let

A =

 2 0 2
1 1 2
−1 0 −1


and show that A is idempotent .

Exercise 3.2.25 Let A =

[
a b
c d

]
and B =

[
e f
g h

]
.

(a) Compute the product Det(A)Det(B)

(b) Compute Det(AB).

(c) Compare your answers to (a) and (b).





4. Directional Derivatives and Differentiability

4.1 Directional Derivatives of Real-valued Functions

Motivation
The partial derivatives fx and fy of f (x,y) at (x0,y0) tell us the rate of change of f at (x0,y0) as you
move parallel to the x or the y axis, respectively. How do you determine the rate of change of f as
you move in a different direction. For example, what is the rate of change of f as you move along
a line such as y = x?

Outcomes
• Understand the definition of directional derivatives and be able to compute directional deriva-

tives using this definition.

• Be able to find the tangent line to a curve given by the intersection of a vertical plane with the
graph z = f (x,y) of a function.

4.1.1. Definition and examples

Suppose that the temperature at a point (x,y) on a flat metal plate is given by

f (x,y) = 3x2y

where x and y are measured in centimeters and the temperature is in degrees celsius. At, say, the point
(x0,y0) = (1,2), we can compute that fx(1,2) = 12 and fy(1,2) = 3. This tells us that as we move in
the x, respectively y, directions from (1,2), the instantaneous rate of change of temperature is 12 deg/cm,
respectively 3 deg/cm.

How do we measure the rate of change of the temperature as we move in other directions? We can
specify the direction we are interested in by a unit vector, e.g., u = 〈3

5 , 4
5〉. Imagine moving a temperature

probe at unit speed (one cm per second) along a straight line ` in the direction u passing through (1,2) at
time zero. This line is given by

` : x = 1+ 3
5t, y = 2+ 4

5t.

Letting g(t) be the temperature measured by the probe at time t, we have

g(t) = f (1+ 3
5t,2+ 4

5t) = 3(1+ 3
5t)2(2+ 4

5t).

73
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The rate of change of temperature at time t = 0 as measured by the probe is g′(0). We leave it to the reader
to compute that

g′(0) = 48
5 .

Thus the temperature probe is measuring a rate of change of 48
5 deg/sec. Since the probe is moving at unit

speed (i.e., the probe is t centimeters from the point (1,2) at time t seconds), we conclude that:
The instantaneous rate of change of temperature at the point (1,2) in the direction u = 〈3

5 , 4
5〉 is 48

5 deg/cm.
We emphasize the importance of using a unit vector u, so that the probe is moving at unit speed. If the

probe moved faster, the rate of change of temperature with respect to time as measured by the probe would
be greater that the rate of change of temperature with respect to distance on `; the latter rate of change is
the one we want.

The example above motivates the following definition:

Definition 4.1: Directional Derivatives
Let f : D→ R be a real-valued function of two variables. For (x0,y0) a point in the domain D and
u = 〈u1,u2〉 any unit vector, we define the directional derivative of f at (x0,y0) in the direction u by

Du f (x0,y0) =
d
dt |t=0

f (x0 + tu1, y0 + tu2).

We can also write this as Du f (x0,y0) = g′(0) where g(t) = f (x0 + tu1, y0 + tu2).

Example 4.2

Let f (x,y) = exy. Find the directional derivative of f at the point P(2,0) in the direction from P
towards Q(5,−4).

Solution. We first need the unit vector u in the direction of the displacement vector PQ = 〈3,−4〉. Since
the displacement vector has length 5, we multiply by 1/5 to obtain u = 〈3

5 ,−4
5〉. Thus:

Du f (2,0) = d
dt |t=0 f (2+ 3

5t, 0− 4
5t) =

d
dt |t=0

e(2+
3t
5 )(−4t

5 ) =−8
5

(We leave it to the reader to check the last equality.)
♠

4.1.2. Comparing directional derivatives and partial derivatives

You have learned that the partial derivative fx(x0,y0) tells you the rate of change of f at (x0,y0) as you head
in the x-direction, i.e., in the direction of the vector 〈1,0〉. But that’s exactly the information conveyed by
the directional derivative D〈1,0〉 f (x0,y0). In fact we have:

Proposition 4.3

fx(x0,y0) = D〈1,0〉 f (x0,y0) and fy(x0,y0) = D〈0,1〉 f (x0,y0)
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Proof. Let g(x) = f (x,y0). Then
fx(x0,y0) = g′(x0).

Next D〈1,0〉 f (x0,y0) =
d
dt |t=0 f (x0 + t,y0) =

d
dt |t=0 g(x0 + t). Thus by the chain rule,

D〈1,0〉 f (x0,y0) = g′(x0 +0)
d
dt
|t=0 (x0 + t) = g′(x0)(1) = g′(x0).

Comparing the two displayed formulas, we obtain the first statement of the proposition. The second one
is similar. ♠

4.1.3. Tangent lines to mountain paths

Let f : D→R be a real-valued function of two variables and consider the graph z= f (x,y). View the graph
as the surface of a mountain (or valley) by thinking of the positive x-axis as pointing east, the positive y
axis as pointing north and thinking of z as elevation. If you walk due east or due north on the mountain
starting from the point (x0,y0, f (x0,y0)), then the partial derivative fx(x0,y0) tells you how steep your path
is on the mountain since fx is the rate of change of f (x,y) (elevation) with respect to x (your east-west
position). Similarly:

• Du f (x0,y0) tells you the slope of your mountain path at the point (x0,y0, f (x0,y0)) if you walk in
the direction specified by the unit vector u.

Figure 4.1 shows part of the graph of a function z = f (x,y), a point (x0,y0) = (a,b) in the xy plane and
a unit vector u positioned at P. (P is expressed as (a,b,0), since the xy plane is viewed as sitting in R3 in
the illustration.) The tan-colored plane is the vertical plane that contains the line in the xy plane through P
with direction vector u. This plane cuts the graph f in a curve through the point Q = (a,b, f (a,b)). This
curve is the mountain path referred to above. As you walk in the direction specified by u, it appears that
you are going downhill. Thus Du f (a,b) < 0 and the value of Du f (a,b) tells you how steeply you are
descending. Also shown in the picture is the tangent line to your mountain path through Q. We will see
shortly how to find this tangent line.

Figure 4.1
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Example 4.4

Let f (x,y) = x3e5y. Viewing the positive x-axis as pointing east, the positive y axis as pointing north
and thinking of z as elevation, suppose you walk northwest on the “mountain” (the graph of f ),
starting from the point (1,0, f (1,0)) = (1,0,1). Are you ascending or descending? At what rate?

Solution. We first need the unit vector u in R2 that points northwest. As in Figure 4.2, we see that

u = 〈− 1√
2

,
1√
2
〉.

x (east)

y (north)
u

Figure 4.2

We can now compute the slope of this mountain path:

D
〈− 1√

2
, 1√

2
〉

f (1,0) =
d
dt |t=0

(1− 1√
2

t)3e5t/
√

2 =
√

2.

(We leave it to the reader to check the last equality.) Thus you are going uphill at a slope of
√

2.
♠

Returning to the general situation in Figure 4.1, let’s find the vector equation

r(t) = 〈x(t), y(t), z(t)〉 (4.1)

for the path C that is given as the intersection of the graph z = f (x,y) with the tan-colored plane.
Write the vector u as u = 〈u1,u2〉. Since the path C lies directly above the line in the xy-plane through

(x0,y0) in the direction u, we have

x(t) = x0 +u1t, y(t) = y0 +u2t. (4.2)

(Again in the picture, x0 is denoted a and y0 is denoted b.) Since the curve lies on the graph of f , we must
have

z(t) = f (x(t), y(t)) = f (x0 +u1 t, y0 +u2 t) (4.3)

Thus the path is given by

r(t) = 〈x0 +u1 t, y0 +u2 t, f (x0 +u1 t, y0 +u2 t)〉.

We next find the tangent line to this path at the point (x0,y0, f (x0,y0)). The tangent line is drawn in red
in Figure 4.1. The first two components of the tangent vector r′(0) are easy to compute. For the third, note
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that the z-component z(t) = f (x0 +u1 t, y0 +u2 t) of r(t) is precisely the function that we differentiate to
obtain Du f (x0,y0). (This function was called g(t) in the Definition 4.1 of directional derivative.) Thus

r′(0) = 〈u1, u2, Du f (x0,y0)〉.

This gives us the tangent vector. The point of tangency is (x0, y0, f (x0,y0)). The reader can now write
down the tangent line.

Example 4.5

Let C be the mountain path in Example 4.4. Let’s find the tangent line to our northwest mountain
path at the point (1,0, f (1,0)) = (1,0,1). We have u = 〈− 1√

2
, 1√

2
〉, and we found that Du f (1,0) =

√
2, so the tangent vector to our path at the point (1,0,1) is given by

〈− 1√
2
, 1√

2
,
√

2〉.

The tangent line is given by

T(t) = 〈1,0,1〉+ t〈− 1√
2
, 1√

2
,
√

2〉.

(To get a geometric sense of this equation, note that as t increases by one unit, the horizontal
change (meaning the change in x,y) on the tangent line is given by 〈− 1√

2
, 1√

2
〉, a distance of one

unit in the northwest direction. Meanwhile, the elevation z changes by
√

2. Thus the (change in
elevation)/(change in horizontal position) is

√
2

1 =
√

2. This is exactly what we mean when we say
that the slope heading northwest from the point (1,0,1) is

√
2.

4.1.4. An intriguing example

Example 4.6

Let
f (x,y) = x1/3y2/3.

Compute Du f (0,0) where u = 〈1,0〉.

Solution. Du f (0,0) = g′(0) where g(t) = f (0+ t,0) = t1/3(0) = 0. Since g(t) = 0 for all t, we have
g′(0) = 0, so Du f (0,0) = 0.

♠
What’s strange about this example? Recall Proposition 4.3: We know that D〈1,0〉 f (0,0) = fx(0,0).

Thus we’ve shown that fx(0,0) = 0. You might at first think that this is a mistake, since you may want to
compute that

fx(x,y) = 1
3x−2/3y2/3 (4.4)

and then be concerned by the fact that x−2/3y2/3 is of the form ∞ · 0 when (x,y) = (0,0), which is an
undefined quantity. The mystery goes away, however, if you remember that fx(0,0) = h′(0) where h(x) =
f (x,0). (See Equation (1) on page 953 of Stewart.) Since f (x,0)≡ 0, we again get fx(0,0) = 0.
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What’s going on here is that the expression fx(x,y) = 1
3x−2/3y2/3, which is valid when x 6= 0, does not

have a limit as x→ 0. The fact that the limit doesn’t exist says that fx isn’t continuous at the origin (0,0).
Nevertheless, fx(0,0) does exist, we computed it! We just had to be sure to plug in y0 = 0 (and to note that
f (x,0) ≡ 0) before differentiating with respect to x rather than after. For nice functions with continuous
partials, it doesn’t matter whether you plug in the value y0 for y before or after differentiating with respect
to x, but it does matter when the partials aren’t continuous.

Aside: When y0 6= 0, we do run into a problem with fx(0,y0). For example, if y0 = 1, then to compute
fx(0,1), we set h(x) = f (x,1) = x1/3. Since h′(0) doesn’t exist, the partial fx(0,1) doesn’t exist. The only
point on the y axis where fx does exist is the origin, as computed above.

Figure 4.3 shows the graph of the function in Example 4.6. The red dotted line is the x-axis and lies
on the graph of the function. When you head east from the origin, you are simply walking on the x-axis,
going neither up nor down and so your slope fx(0,0) is zero. The y axis is the horizontal green line that
separates the light green region from the steep gray region. If you move slightly away from the x-axis to
(x,y0), then (no matter how small y0 is), you find yourself on a cliff when you pass through (0,y0).

Figure 4.3

4.1.5. Directional derivatives in higher dimensions

For real-valued functions of three variables, directional derivatives are defined analogously to Defini-
tion 4.1.

Example 4.7

Let f (x,y,z) = xyz2. Compute Du f (2,1,1) where u is the unit vector 〈1
9 ,−2

9 , 2
9〉.
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Solution.

Du f (2,1,1) =
d
dt |t=0

f
(

2+
t
9

, 1− 2t
9

, 1+
2t
9

)
=

d
dt |t=0

(
2+

t
9

) (
1− 2t

9

) (
1+

2t
9

)2

=
4
9

♠

4.1.6. Section summary

• The directional derivative Du f (x0,y0) tells you the rate of change of f in the direction of the unit
vector u.

• Definition 4.1 tells you how to compute directional derivatives.

• It is essential that u be a unit vector. If you want to find the directional derivative in a direction
specified, say, by a displacement vector PQ, first find a unit vector in the specified direction.

• The partial derivatives fx and fy are the directional derivatives Du f corresponding to u = 〈1,0〉 and
u = 〈0,1〉, respectively.

• The tangent vector at (x0,y0, f (x0,y0)) to the curve in the graph z = f (x,y) that lies above the line
〈x,y〉= 〈x0,y0〉+ tu in the xy-plane is given by 〈u1,u2,Du f (x0,y0)〉 where u = 〈u1,u2〉.

Exercises

Exercise 4.1.1 For each of the following, compute the directional derivative Du f (x0,y0).

(a) f (x,y) = x2 ln(y), (x0,y0) = (2,1), u = 〈−4
5 , 3

5〉.

(b) f (x,y) = e2x−y, (x0,y0) = (1,2), u = 〈4
5 ,−3

5〉.

(c) f (x,y) = x2 ln(y), (x0,y0) = (2,1), u = 〈−1
2 ,
√

3
2 〉.

(d) f (x,y) = x
√

x+ y, (x0,y0) = (1,3), u = 〈 1√
2
, 1√

2
〉.

Exercise 4.1.2 For each of the following, compute the directional derivative of f at the point P in the
direction from P to Q.

(a) f (x,y) = sin(πxy), P = (2,0), Q = (4,2)

(b) f (x,y) = (x2− y)3, P = (1,2), Q = (3,5).

(c) f (x,y) = ln(x2 + y2), P = (1,1), Q = (3,1).
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Exercise 4.1.3 For each of the functions in Exercise 4.1.1, find the tangent vector at (x0,y0, f (x0,y0)) to
the curve in the graph z = f (x,y) that lies above the line 〈x,y〉= 〈x0,y0〉+ tu.

Exercise 4.1.4 For each of the following, compute Du f (x0,y0,z0).

(a) f (x,y,z) = x2eyz, (x0,y0,z0) = (2,2,0), u = 〈2
3 , 2

3 , 1
3〉.

(b) f (x,y,z) = tan(xy− z), (x0,y0,z0) = (2,1,2), u = 〈3
5 ,0, 4

5〉.

Exercise 4.1.5 (This exercise illustrates Proposition 4.3. )
Let f (x,y) = y

√
x2 + y2. Compute fx(3,4) and D〈1,0〉 f (3,4) and check that they agree. Similarly

compare fy(3,4) and D〈0,1〉 f (3,4).

Exercise 4.1.6 Let the x-axis point east, let the y axis point north, and let z denote elevation. Let f (x,y) =
x2y+ xy3, and view the graph z = f (x,y) as a mountain. Suppose that you are hiking northeast on this
mountain passing through the point (2,1,6). Find the tangent line to your path at this point.

Exercise 4.1.7 Answer the same question as in Exercise 4.1.6, where now f (x,y) = x
√

y, you are hiking
due south, and you are passing through the point (2,1,2).

Exercise 4.1.8 Let f be the function in Example 4.6. Compute Du f (0,0) for each of the following unit
vectors u.

(Note: All these directional derivatives do exist. After you write down the expression that you need to
differentiate, be sure to simplify it before taking the derivative. Otherwise you will not be able to carry out
the computation.)

(a) u = 〈3
5 , 4

5〉

(b) u = 〈−3
5 ,−4

5〉

(c) u = 〈 1√
2
, 1√

2
〉

4.2 Differentiable functions and tangent planes

Motivation
In single variable calculus, you learned that a function f : R→ R is differentiable at a point x0 if
the limit

lim
h→0

f (x0 +h)− f (x0)

h

exists. The derivative f ′(x0) was then defined to be this limit.
Geometrically, you then learned that differentiability of f at x0 means that the graph of f has a
tangent line at (x0, f (x0)) of slope f ′(x0). The tangent line is given by

y− f (x0) = f ′(x0)(x− x0).

In this section, we will give an informal geometric approach to defining the concept of differentia-
bility of a real-valued function f (x,y) of two variables by introducing the notion of tangent planes.
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Outcomes
• Gain a geometric understanding of what it means for a plane to be tangent to a surface.

• Understand the concept of differentiability.

• Learn a sufficient condition for testing whether a function is differentiable.

• Be able to find the tangent plane of a differentiable function.

• Be able to use the tangent approximation of a differentiable function to estimate values of the
function, and be able to carry this out in applications.

4.2.1. Tangent Planes to Surfaces

Before talking about tangent planes, let’s briefly review what we know about tangent lines to curves. You
first saw tangent lines in single variable calculus when you looked at tangent lines to graphs y = f (x) of
differentiable functions. The derivative of the function gave you the slope. The tangent lines give you a
way of approximating complicated functions near a given point.

We’ve also seen tangent lines to smooth parametrized curves in R2 and R3. In Figure 4.4, we illustrate
the tangent line to the circle r(t) = 〈cos(t), sin(t)〉 at the point (1,0). This particular tangent line is a
vertical line, i.e., it is parallel to the y-axis. In contrast, as you learned in calculus, tangent lines to graphs
of differentiable functions f (x) are never vertical lines since the slope f ′(x0) can’t be infinite.

Figure 4.4

The function f (x) = |x|, whose graph is shown in Figure 4.5 is a familiar example of a function that
does not have a tangent line at the point x0 = 0. There are two rays competing to be tangent at the origin:
the ray y = x for x≥ 0 and the ray y =−x for x≤ 0, but they don’t match up.

Figure 4.5

When we want to approximate values on a surface rather than a curve, it is natural to ask for a tangent
plane. In figure 4.6 we show a picture of the sphere x2+y2+ z2 = 1 and its tangent plane at the north pole
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(0,0,1). This plane is horizontal; its equation is z = 1. If you imagined walking on the sphere along any
smooth path r(t) = 〈x(t),y(t),z(t)〉 that passes through the north pole, you would reach your maximum
elevation at the moment t0 when you reached the north pole. Thus z′(t0) would be zero and so your tangent
line would be of the form 〈x,y,z〉 = 〈0,0,1〉+ t〈x′(t0),y′(t0),0〉. Since the last coordinate of the tangent
vector is 0, the tangent line would be parallel to the xy-plane. Thus every such tangent line lies on the
tangent plane z = 1. All the different tangent lines fit together to form the tangent plane.

Figure 4.6

The sphere example suggests the following definition: 1

Definition 4.8: Informal Definition of Tangent Plane to a Surface

A plane P is tangent to a surface S at a point p if the tangent line at p to every smooth curve in S
through p lies in the plane P .

The condition in Definition 4.8 is extremely demanding. Given a point p on a surface S, there will be
infinitely many curves on S passing through p. We are asking that the tangent lines to all these curves be
coplanar. We know that any two such lines that aren’t parallel uniquely determine a plane through p. For
all the rest of them to lie on the same plane seems almost too much to ask!

Figure 4.7 shows the double cone S whose equation is z2 = x2 + y2. For our point p, let’s take the
origin (0,0,0), which is the vertex of the cone. The entire surface of the cone is filled up by straight lines
passing through the origin. We illustrate 3 of these lines in Figure 4.7. Each of these lines is tangent to a
smooth curve (namely the line itself!) in S through the origin. They are not all coplanar, i.e., there’s no
plane through the origin containing all of them. By Definition 4.8, the surface S does not have a tangent
plane at the origin.

Figure 4.7

1To fully define the notion of tangent plane to a surface, one needs a condition to guarantee that there are plenty of smooth
curves on the surface to begin with. That’s why we are calling Definition 4.8 an “informal” definition.
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4.2.2. Tangent Planes to Graphs of Functions

For real-valued functions f of one variable that are differentiable at a point x0, we know that the graph
y = f (x) has a tangent line at (x0, f (x0)), and the tangent line is not a vertical line, meaning that it is
not parallel to the y-axis. The slope of the tangent line is then the derivative. We will use an analogous
property to define differentiability of real-valued functions of more than one variable.

Let z = f (x,y) be the graph of a real-valued function of two variables. The function f may be very
difficult to evaluate so we would like to be able to get a good approximation near any point (x0,y0) in
its domain. The graph z = f (x,y) is a surface, so it makes sense to ask whether it has a tangent plane at
(x0,y0, f (x0,y0)) and, if so, to try to find an explicit equation for the tangent plane.

Definition 4.9: Definition of differentiability

We say that f is differentiable at (x0,y0) if the graph z = f (x,y) has a tangent plane at P at
(x0,y0, f (x0,y0)) and the tangent plane is not vertical, i.e., it is not parallel to the z-axis.

Recall that every plane has an equation of the form ax+ by+ cz = d. The vertical planes – the ones
we’re avoiding– are those for which c = 0. (To see this, note that if a plane ax+by+ cz = d is parallel to
the z-axis, then the vector 〈0,0,1〉 is parallel to the plane and thus orthogonal to the normal vector 〈a,b,c〉.
We then have 〈a,b,c〉 · 〈0,0,1〉= 0, so c = 0.)

How does one check whether the graph of a function has a tangent plane and thus that the function is
differentiable? Happily, the following result, which is proven in more advanced courses, makes it easy to
check that many functions have tangent planes:

Theorem 4.10
If the first order partial derivatives of f exist and are continuous at (x0,y0), then f is differentiable
at (x0,y0), i.e., the graph z = f (x,y) has a (non-vertical) tangent plane at the point (x0,y0, f (x0,y0)).

(Aside: The theorem doesn’t give us any information about functions whose partial derivatives aren’t
continuous at a point (x0,y0). In some, but not all such cases, the function actually is differentiable but it
can be hard to check.)

As an example of Theorem 4.10, the function f (x,y) = 4− x2− y2 has continuous partial derivatives
and thus is differentiable at every point. Figure 4.8 illustrates the tangent plane at the highlighted point on
its graph. You can picture what the tangent planes would look like at other points.
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Figure 4.8

Once we know a tangent plane exists, how do we find an explicit equation for the plane? Theorem 4.10
tells us that the tangent plane must contain the tangent line to every smooth curve in the graph through
(x0,y0, f (x0,y0)). We know lots of curves in the graph! Here’s some:

Let u = 〈u1,u2〉 be any unit vector. Then, as in Subsection 4.1.3, the curve

r(t) = 〈x0 + tu1,y0 + tu2, f (x0 + tu1,y0 + tu2)〉

passes through the point (x0,y0, f (x0,y0)) at time t = 0 and has tangent line

〈x,y,z〉= (x0,y0, f (x0,y0))+ t〈u1, u2, Du f (x0,y0)〉.

By Definitions 4.8 and 4.9, this line must lie on the tangent plane through (x0,y0, f (x0,y0)). Thus:

Proposition 4.11

For every unit vector u = 〈u1,u2〉, the vector

〈u1, u2, Du f (x0,y0)〉

is parallel to the tangent plane to the graph z = f (x,y) through (x0,y0, f (x0,y0)).

We only need two of these vectors (as long as we choose ones that aren’t parallel) to obtain the equation
of the plane. We get:

Theorem 4.12
If the graph z = f (x,y) has a tangent plane at (x0,y0, f (x0,y0)), then the tangent plane is given by

z− z0 = a(x− x0)+b(y− y0)

where z0 = f (x0,y0) and
a = fx(x0,y0) and b = fy(x0,y0).

Proof. To find a normal vector to the plane, we need two linearly independent vectors that are parallel
to P . Proposition 4.11 gives us many choices. Let’s use the ones corresponding to the two partials:
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When u = 〈1,0〉, the directional derivative Du equals the partial derivative fx. (See Proposition 4.3.) Thus
Proposiiton 4.11 tells us that 〈1,0, fx(x0,y0)〉 is parallel to the tangent plane. Similarly, taking u = 〈0,1〉,
we see that 〈0,1, fy(x0,y0)〉 is also parallel to the tangent plane. Taking the cross product of these two
vectors we obtain the normal vector

n = 〈− fx(x0,y0),− fy(x0,y0), 1〉.

(The reader should verify the computation of the cross product.) Since we know that the tangent plane
contains the point (x0,y0, f (x0,y0)), we now have both a point on the plane and the normal vector so we
can write down the equation of the tangent plane:

− fx(x0,y0)(x− x0)− fy(x0,y0)(y− y0)+(z− z0) = 0

or

z− z0 = fx(x0,y0)(x− x0) + fy(x0,y0)(y− y0).

♠

Example 4.13

Let
f (x,y) = x2y3, (x0,y0) = (2,1).

We have ∂ f
∂x (x0,y0) = 4, ∂ f

∂y (x0,y0) = 12 and f (x0,y0) = 4. The partials are polynomials, hence are
continuous, so we know by Theorem 4.10 that f is differentiable and thus has a tangent plane. By
Theorem 4.12, the tangent plane to the graph of f at (2,1,4) is given by

z−4 = 4(x−2)+12(y−1).

We can also express the tangent plane in Example 4.13 as z = L(x,y) where

L(x,y) = 4+4(x−2)+12(y−1). (4.5)

Definition 4.14: Tangent Approximation to the Graph

If f is differentiable at (x0,y0), we define the tangent approximation to f near (x0,y0) to be the
function

L(x,y) = f (x0,y0)+ fx(x0,y0)(x− x0) + fy(x0,y0)(y− y0).

Observe that the tangent plane to the graph of f at (x0,y0, f (x0,y0)) can then be written as

z = L(x,y).

Example 4.15

Use the tangent approximation of an appropriate function in order to estimate the value of√
2.92 +4.12.
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Solution. The value should be close to
√

32 +42 = 5. The natural function to consider here is

f (x,y) =
√

x2 + y2.

Since (2.9,4.1) is close to (3,4), the tangent approximation to f near (3,4) should give us a reasonable
estimate of f (2.9,4.1). A computation gives:

fx =
x√

x2 + y2
and fy =

y√
x2 + y2

.

Both partials are continuous at (3,4) so the tangent plane and thus the tangent approximation exist (see
Theorem 4.10). Since fx(3,4) = 3

5 = 0.6 and fy(3,4) = 4
5 = 0.8, we obtain the tangent plane

z−5 = 0.6(x−3)+0.8(y−4)

and the tangent approximation to f :

L(x,y) = 5+0.6(x−3)+0.8(y−4).

Thus
f (2.9,4.1)∼ L(2.9,4.1) = 5+0.6(−0.1)+0.8(0.1) = 5.02.

(Aside: The tangent approximation gave us two digits to the right of the decimal place, but it is unlikely
that the approximation is actually valid to that many digits. There are methods available to determine the
number of digits of accuracy. However, we will not address this question in this course.)

♠

Notation 4.16
Assume that f (x,y) is differentiable at (x0,y0) and let z0 = f (x0,y0). Let (x,y) be close to (x0,y0)
and write

∆x = x− x0 and ∆y = y− y0.

Thus ∆x and ∆y denote small changes in x and y. The resulting change in z = f (x,y) is denoted ∆z
and is given by

∆z = f (x,y)− f (x0,y0).

We emphasize that you have control over ∆x and ∆y, but the resulting ∆z is determined by the
function f .

The tangent plane approximation tells us exactly how the value of z on the tangent plane changes when
x and y change by ∆x and ∆y, namely

z− z0 = fx(x0,y0)(x− x0) + fy(x0,y0)(y− y0) = fx(x0,y0)∆x + fy(x0,y0)∆y.

When ∆x and ∆y are small, the tangent approximation is a good approximation of the function. Thus the
change ∆z of the function is approximated by:

∆z ∼ fx(x0,y0)∆x + fy(x0,y0)∆y. (4.6)

(The notation ∼ means “approximately equal to”.)
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Example 4.17

A closed conical storage tank has radius four feet and height 10 feet. Estimate how much storage
volume would be lost if insulation is added to the inside of the tank, resulting in a decrease of the
radius by 3 inches and of the height by 6 inches. (Recall that the volume of a cone of radius r and
height h is 1

3πr2h.)

Solution. We have r0 = 4 feet, h0 = 10 feet, ∆r = −1
4 foot and ∆h = −1

2 foot. Since our independent
variables are r and h and our dependent variable is V , Equation (4.6) says that

∆V ∼ ∂V
∂ r

(4,10)∆r +
∂V
∂h

(4,10)∆h.

At the point (4,10) the partials of V are given by

∂V
∂ r

=
2
3

πrh =
80π

3
and

∂V
∂h

=
1
3

πr2 =
16π

3
.

We thus have

∆V ∼
(

80π

3

)(
−1

4

)
+

(
16π

3

)(
−1

2

)
=−28π

3
cubic feet.

♠

4.2.3. Section summary

• For a plane P to be the tangent plane to a surface at a point P, it must contain the tangent line to
every smooth curve in the surface that passes through P.

• We say a real-valued function f of two variables is differentiable at a point (x0,y0) if the graph of f
has a tangent plane at (x0,y0, f (x0,y0)).

• One way to test whether a function f is differentiable at (x0,y0) is to check whether its first order
partials fx and fy are continuous at (x0,y0). If so, then the function is differentiable. If not, then the
test doesn’t give enough information to decide.

• If f is differentiable at (x0,y0), then its tangent plane at (x0,y0, f (x0,y0)) is given by
z− f (x0,y0) = fx(x0,y0)(x− x0) + fy(x0,y0)(y− y0).

• We can then approximate f near (x0,y0) by its tangent approximation
f (x,y)∼ L(x,y) = f ((x0,y0))+ fx(x0,y0)(x− x0) + fy(x0,y0)(y− y0).

• We can also use the language of differentials, writing
∆z ∼ fx(x0,y0)∆x + fy(x0,y0)∆y where ∆x = x− x0 and ∆y = y− y0, the change in x and y that we
control. The expression ∆z then approximates the resulting change in z = f (x,y).

Concluding remarks. While we have discussed what it means for a function to be differentiable, we
haven’t yet defined the derivative of a differentiable function. We’ve only defined partial and directional
derivatives. The notion of derivative will come later, after we introduce linear transformations.
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5.1 The language of functions

Outcomes
• Understand the following concepts:

– Functions whose domain and range may both have dimension greater than one

– Components of a function

– Independent and dependent variables

– The image of a subset of the domain of a function.

• Understand what information is conveyed when we introduce a function by saying, for exam-
ple, that F : R2→ R3.

You are already familiar with several types of functions:

1. Real-valued functions of one variable. For example, consider the function f (x) = 1+
√

x. This
function is defined only for x ≥ 0, so the domain of the function (the input) is [0,∞). The range
of f (the ouput) is [1,∞) since 1+

√
x ≥ 1 always and takes on every value in [1,∞). You usually

visualize this function by drawing its graph y = f (x). (When we refer to y = f (x) as the graph of f ,
we mean that the graph of f is the curve consisting of all points (x,y) such that y = f (x).)

It is common to alert the reader to the fact that you are about to define a real-valued function whose
domain is [0,∞) by saying something like: Let f : [0,∞)→ R be given by f (x) = 1+

√
x. The

set before the arrow tells the reader the domain. The R after the arrow says that the function is
real-valued, i.e., the range is contained in R.

2. Real-valued functions of two or three variables. For example, consider the function f (x,y)= x2+y2.
The domain of this function is R2. Since f (x,y) takes on every non-negative real value, the range is
[0,∞). Again, you can visualize this function by drawing its graph z = f (x,y).

Again it is common to alert the reader to the fact that you are about to define a real-valued function
whose domain is R2 by writing: Let f : R2→ R be given by f (x) = x2 + y2.

3. Vector-valued functions of one variable. For example, consider the function F : R→ R2 given by

F(t) = 〈cos(t), sin(t)〉

The range of F is the circle x2 + y2 = 1. (More precisely, the range consists of the position vectors
of all the points on this circle but we normally just think of it as the circle itself.) You are used to
viewing this equation as the vector equation for the circle.
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4. Vector-valued functions of more than one variable. You encountered functions in which both the
domain and the range have dimension greater than one in Section 2.3 when we discussed vector
equations of planes. For example, consider the function F : R2→ R3 given by

F(s, t) = 〈1,1,1〉+ s〈2,1,4〉+ t〈1,2,3〉

or after simplifying:

F(s, t) = 〈1+2s+ t,1+ s+2t,1+4s+3t〉

This is an example of a vector-valued function of two variables. The range is the plane in R3 through
the point (1,1,1) parallel to the vectors 〈2,1,4〉 and 〈1,2,3〉. (Again, we are identifying points with
their position vectors as in the previous example.)

The word transformation is a synonym for “function”. One views the function as “transforming” the
domain to the range.

Notational Conventions 5.1
• For vector-valued functions of one or more variables, we will usually express the values of

the function as column matrices. Thus for example, the function F in the 4th example above
may be written as

F(s, t) =

 1+2s+ t
1+ s+2t

1+4s+3t

 (5.1)

We will think of the column matrix both as a point in R3 and also as a vector. The advantage
of thinking of it as a point is that we can describe the range geometrically. (E.g., in this
example the range is a plane.) The advantage of also allowing ourselves to view it as a vector
is that vectors can be added and can be multiplied by scalars; these operations don’t make
sense for points.

• We will sometimes denote variables in R2 or R3 as boldface letters x. E.g., we may write
x = (x,y) when working in R2 or x = (x,y,z) when working in R3. We will then write [x] for
the column vector [x] = [ x

y ] in R2 and similarly in R3.

A function whose range is contained in R3 (or in R2) is made up of three (respectively two) real-
valued functions called the components or component functions of F . For example, the components of
the function F : R2 → R3 in Equation (5.1) are F1(s, t) = 1+ 2s+ t, F2(s, t) = 1+ s+ 2t and F3(s, t) =
1+4s+3t.
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Example 5.2

• Define F : R3→ R2 by

F(x,y,z) =
[

x2yz
exy+z

]
.

(Again we said F : R3 → R2 just to alert the reader that we are about to introduce a func-
tion with domain R3 and with range contained in R2.) The component functions of F are
F1(x,y,z) = x2yz and F2(x,y,z) = exy+z.

• Just as you are used to writing, say y = f (x) when working with real-valued functions of one
variable, we often write expressions like[

u
v

]
= F(x,y,z)

and refer to x,y,z as the independent variables and u,v as the dependent variables. Thus for
the function in this example, we might write[

u
v

]
=

[
x2yz
exy+z

]
.

Example 5.3

Define a function F : R2→ R3 by

F(x,y) =

1 2
4 1
7 2

[x
y

]

or in the shorthand notation introduced in 5.1 above,

F(x) =

1 2
4 1
7 2

[x] .

Find the component functions of F .

Solution. By multiplying matrices, we obtain

F(x,y) =

 x+2y
4x+ y

7x+2y


Thus the component functions are F1(x,y) = x+2y, F2(x,y) = 4x+ y, and F3(x,y) = 7x+2y ♠
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Definition 5.4: The image of a subset of the domain

• Given a function F and a point x in the domain of F , the value F(x) is sometimes referred to
as the image of x under F (or just as the image of x if it is clear that we are referring to the
function F).

• If A is a subset of the domain, the image of A (under F) is the subset of the range of F
consisting of the images of all the points in A.

Example 5.5: Image of a subset

Let F : R→ R2 be given by

F(t) =
[

cos(t)
sin(t)

]
.

(Note that this is the same function as in 3 above, now written in column form, and is the vector
equation of the circle 2 + y2 = 1.)
Find the image of the interval [0,π] under F .

Solution. As t goes from 0 to π , the values F(t) trace out the semicircle x2+y2 = 1, y≥ 0. Thus the image
of [0,π] is this semicircle. ♠

Notation 5.6

• When we want to make a statement about all functions whose domain is any of R, R2 or R3

and whose range is contained in any of R, R2 or R3, we will write F : Rn → Rm without
specifying n and m. Similarly, if we want to allow the domain to be just a subset of R, R2 or
R3, we might write F : D→ Rm with D⊂ Rn.

Exercises

Exercise 5.1.1 For each of the following functions, write an expression of the form F :Rn→Rm to indicate
the domain and the target space.

Example: F(x,y) =
[

x3y
ysin(x)

]
. Answer: F : R2→ R2.

(a) F(x) = x4 + x2

(b) F(x) =
[

x2

x3 +1

]

(c) F(x,y,z) =
[

x− y
y− z

]
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(d) F(s, t) =

 es

s2t
s+2t


Exercise 5.1.2 For each function F in Exercise 5.1.1(b)–(d), write down the component functions of F.

Exercise 5.1.3 In each of the following, you are given a function and you are given a subset A of the
domain of that function. (i) Find the range of the function, and (ii) find the image of the subset A.

(As an example, for the function and subset in Example 5.5, you could say that the range of the function
is the circle x2 + y2 = 1 or that the range is the circle centered at the origin of radius one, and that the
image of A is the part of the circle with y≥ 0. )

(a) F(x) = x2; A = [1,2]

(b) F(t) =
[

1+2t
3t

]
; A = [1,2]

(c) F(s, t) =

s+2t
s− t

3s+ t

; A is the t-axis (i.e., A is the line in R2 consisting of all points of the form (0, t).)

Hint: In the more familiar vector form, you can write F(s, t) as s〈1,1,3〉+ t〈2,−1,1〉.

Exercise 5.1.4 For each of the following functions, (i) find the component functions and (ii) write an
expression of the form f : Rn→ Rm (see Exercise 5.1.1).

(a) F(x,y,z) =
[

1 2 4
4 1 5

]x
y
z



(b) F(x) =

1
4
7

[x]

(c) F(x,y,z) =
[
1 2 8

]x
y
z
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5.2 Linear Transformations and Their Representing Matrices

Outcomes
A. Understand the definition of linear transformations and their representing matrices.

B. Be able to recognize whether a function F : Rn→ Rm is a linear transformation and find its
representing matrix.

C. Be able to determine the range of a linear transformation from the columns of the representing
matrix; understand the concept of rank.

D. Gain a geometric understanding of linear transformations and the various ways in which lines
and planes are given by linear transformations.

5.2.1. Real-valued linear transformations

Definition 5.7: Real-valued linear transformations
• A real-valued linear transformation of one variable is of the form T (x) = ax.

• A real-valued linear transformation of two variables is of the form T (x,y) = ax+by.

• A real-valued linear transformation of three variables is of the form T (x,y,z) = ax+by+ cz.

Note that if T : R→ R is a linear transformation, i.e., T (x) = ax, then the graph y = T (x) of T is a
straight line through the origin of slope a. Moreover every line through the origin that is not vertical (i.e.,
not parallel to the y-axis) is the graph of a linear transformation. We now give an analogous description of
linear transformations T : R2→ R.

As we have seen, the scalar equation of every plane in R3 is of the form ax+ by+ cz = d, where
〈a,b,c〉 is normal to the plane. If the plane passes through the origin, then d = 0. We will say that a plane
is vertical if it is parallel to the z-axis. The vertical planes are precisely those for which c = 0. (Indeed, if
the plane is vertical, then the vector 〈0,0,1〉 is parallel to the plane and thus orthogonal to 〈a,b,c〉. Thus
〈0,0,1〉 · 〈a,b,c〉= 0, so c = 0. The converse is similar.)

If the plane isn’t vertical, then c 6= 0 and we can solve for z. For example, the plane 3x−4y+2z = 0
can be written as

z =−3
2

x+2y.

This is the graph of the linear transformation T (x,y) =−3
2x+2y. More generally, we have:
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Proposition 5.8

• Let T : R2→R be a linear transformation, i.e., T (x,y) = ax+by where a and b are constants.
Then the graph z = T (x,y) is a plane through the origin.

• If P is any plane through the origin that is not vertical, then P can be expressed as z= T (x,y)
where T : R2→ R is a linear transformation.

Example 5.9: Contour map

Consider a linear transformation T : R2→ R such as T (x,y) = 2x+3y. Show that the contour map
of T consists of a family of parallel lines. (We leave this to the reader to check.)

For real-valued functions of three variables, we can no longer visualize a graph. However, we can still
talk about the contour map, which will consist of level surfaces of the function.

Example 5.10: Contour map

Consider a linear transformation T : R3→ R such as T (x,y) = 2x+3y+4z. Show that the contour
map of T consists of a family of parallel planes. (We leave this to the reader to check.)

Remark 5.11: Linear transformations and first degree homogeneous polynomials

You are familiar with polynomials in one variable x; for example, 3x2 + 2x+ 5 is a polynomial of
degree 2. Polynomials in two variables x,y are defined similarly; every term is of the form cxnym

where c is a real number and n and m are non-negative integers. For example,

P(x,y) = 3x2 +2xy+4y2 +5x+7y+10

is a polynomial of degree two. The first three terms (those involving x2, xy and y2) are said to be
of degree 2 since the sum of the powers of x and y is 2. The next two terms are of degree one and
the final constant term is of degree zero. One analogously defines polynomials in three or more
variables, e.g., x3 +3xyz+ 1

2yz2 + x2 +2xz+7z is a polynomial in three variables.
A polynomial is homogeneous if all the terms have the same degree. Thus, for example, the poly-
nomial P above is not homogeneous, while the polynomials 3x2 +2xy+4y2 and 5x+7y are homo-
geneous of degree 2 and degree 1, respectively.
Definition 5.7 is equivalent to:

A non-zero real-valued linear transformation T is a homogeneous polynomial of degree one.
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5.2.2. Linear Transformations and their Representing Matrices

Now that we have defined real-valued linear transformations (see Definition 5.7), we can define vector-
valued linear transformations as follows:

Definition 5.12: Linear Transformations
A vector-valued function is said to be a linear transformation if each of the component functions
is a real-valued linear transformation. (Equivalently, each component function is either zero or a
homogeneous polynomial of degree one as in Remark 5.11.)

Here are a few examples of linear transformations:

1. A linear transformation S : R2→ R3:

S(x,y) =

2x+3y
5x+0y
3x−8y


(It’s of course fine to write the second component as 5x.)

2. A linear transformation T : R→ R3:

T (x) =

2x
5x
0


3. A linear transformation F : R3→ R3:

F(x,y,z) =

2x+3y−5z
−x+ y−2z
x+4y+ z


In the same way that we associated an augmented matrix to every system of linear equations in Chap-

ter 1, we can associate a matrix to every linear transformation. Moreover, the linear transformation can be
expressed by matrix multiplication. We illustrate with the three linear transformations S, T and F above:

1. The linear transformation S : R2→ R3 was given by S(x,y) =
[

2x+3y
5x+0y
3x−8y

]
. Check that

S(x,y) =

2 3
5 0
3 −8

[x
y

]
.

2. The linear transformation T : R→ R3 above can be written as

T (x) =

2
5
0

[x] .
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3. The linear transformation F : R3→ R3 can be written as

F(x,y,z) =

 2 3 −5
−1 1 −2
1 4 1

x
y
z

 .

Definition 5.13: Representing Matrix

Given a linear transformation T : Rn→ Rm, the matrix associated to T as in the examples above is
called the representing matrix of T . We will usually denote the representing matrix by [T ] (i.e., by
putting brackets around the name of the linear transformation). Observe:

• The rows of the representing matrix correspond to the component functions of T .

• The columns of the representing matrix correspond to the independent variables; the entries
in the column are the coefficients of the corresponding variable in the various component
functions. Thus the size of the representing matrix [T ] is m×n.

Conversely, starting with any m×n matrix A , we can define a linear transformation T : Rn→Rm with
representing matrix [T ] = A by setting T (x) = A[x], just as we did in Example 5.3 in Section 5.1.

Notational Conventions 5.14: Viewing elements of Rn both as points and vectors

• Following the notational convention 5.1, we will often denote variables in R2 or R3 by bold-
face letters such as x and denote column matrices by expressions such as [x]. E.g, we write
[x] = [ x

y ] for a column vector in R2. Especially when working with linear transformations,
it is convenient to think of elements of R2 or R3 simultaneously as points and as vectors.
Thinking of them as points will enable us to describe linear transformations geometrically.
Thinking of them as vectors will enable us, for example, to take linear combinations.

• While we will normally write the output of a vector-valued linear transformation as a column,
we will use both expressions such as (x,y,z) and x for the input. Thus for example, for a
linear transformation T : R3→ R2 with representing matrix [T ] =

[
2 4 5
1 3 4

]
, we will write both

T (x,y,z) =
[

2 4 5
1 3 4

]x
y
z

 and T (x) =
[

2 4 5
1 3 4

]
[x]

Many functions that arise naturally turn out to be linear transformations even though it is not immedi-
ately obvious. We illustrate with the following example.

Example 5.15: Cross Product

Define F : R3→ R3 by
F(x) = 〈1,2,3〉×x

the cross product of the vectors 〈1,2,3〉 and x = 〈x,y,z〉. Show that F is a linear transformation and
find its representing matrix.
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Solution. By computing the cross product, we find that F(x,y,z) = 〈−3y+ 2z, 3x− z,−2x+ y〉, or in
column form:

F(x,y,z) =

−3y+2z
3x− z
−2x+ y

=

0x−3y+2z
3x+0y− z
−2x+ y+0z


Since each of the component functions is of the form ax+by+cz, we see that F is a linear transformation,
and we can read off its representing matrix

[F ] =

 0 −3 2
3 0 −1
−2 1 0


♠

Similarly, you will see in the section exercises that vector and scalar projections are linear transforma-
tions.

Example 5.16: The Identity Transformation

Let

I2 =

[
1 0
0 1

]
be the 2×2 identity matrix as in Example 3.12. Observe that the corresponding linear transforma-
tion is given by

T (x,y) =
[

1 0
0 1

][
x
y

]
=

[
x
y

]
Thus T maps every element of R2 to itself. T is called the identity transformation of R2.
One defines the identity transformation from R3 to R3 similarly using I3.

5.2.3. What the Columns of the Representing Matrix Tell Us

Prerequisite 5.17

Before reading this subsection, it is important to review Sections 2.1 and 2.3.

In Subsection 5.2.1, we saw that the real-valued linear transformations T : R2→R are precisely those
functions of two variables whose graphs are non-vertical planes through the origin in R3, while real-valued
linear transformations of a single variable are the functions whose graphs are non-vertical straight lines
through the origin in R2.

We next address the geometry of vector-valued linear transformations. The key to understanding their
geometry is to look at the columns of the representing matrix. Recall that when we multiply a matrix
A by a column matrix B, the product AB is the linear combination of the columns of A with coefficients
specified by the entries of B. This was how we initially defined matrix multiplication in Definition 3.6. We
then later observed that a second way to obtain the entries of the product is by taking dot products of the
rows of A with the column B. (The two methods of course yielded the same result.) The first viewpoint is
especially helpful when working with linear transformations.



5.2. Linear Transformations and Their Representing Matrices 99

The reader should go through the example below carefully before reading the theorem that follows.

Example 5.18

Let T : R2→ R3 be the linear transformation with representing matrix [T ] =
[

2 1
3 5
4 7

]
. We have

T (x,y) =

2 1
3 5
4 7

[x
y

]
= x

2
3
4

+ y

1
5
7

 . (5.2)

Observe:

• T (x,y) is a linear combination of the columns of [T ].

• As x and y vary, T (x,y) varies over all linear combinations of the columns. Thus the range
of T is the subspace of R3 spanned by the two columns of [T ]. (This is a plane since the two
columns are linearly independent.)

•

T (1,0) =

2
3
4

 and T (0,1) =

1
5
7


which are the two columns of [T ]. If we think of elements of the domain as vectors (and thus
write i and j in place of (1,0) and (0,1)), then the two columns of [T ] are T (i) and T (j).

Remark 5.19
If we change the names of the independent variables in the example above to s and t and use vector
notation rather than column notation for T (s, t), then Equation 5.2 becomes

T (s, t) = s〈2,3,4〉+ t〈1,5,7〉

which is a familiar type of equation. As in section 2.3, T can be viewed as the vector equation of
the plane through the origin spanned by 〈2,3,4〉 and 〈1,5,7〉. We will return to this viewpoint later.

As in Example 5.18, we have:
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Theorem 5.20: Columns Span the Range

Let T : Rn→ Rm be a linear transformation. Then:

1. The columns of T are the images of the standard basis vectors of Rn. For example, if
T : R3→Rm (so the domain is R3), then the three columns of [T ] are given by T (i), T (j) and
T (k), respectively, i.e.,

[T ] =

 | | |
T (i) T (j) T (k)
| | |


2. T maps every element of Rn to a linear combination of the columns of [T ]. For example, if

the domain of T is R3, then

T (x,y,z) = xT (i)+ yT (j)+ zT (k).

3. Viewing the columns of [T ] as vectors, then the range of T is the subspace of Rm spanned by
the columns.

Note the contrast between linear transformations and many other functions such as f (x) = x2. The
range of the function f (x) = x2 is only part of a line, the ray [0,∞). In contrast, Theorem 5.20 tells us that
the range of a linear transformation is always a subspace of Rm. For example, if the target space is R3,
then the range is one of {0}, a line through the origin, a plane through the origin, or all of R3.

Definition 5.21: Column Span and Rank

Let T : Rn→ Rm be a linear transformations.

• We will refer to the subspace of Rm spanned by the columns of [T ] as the column span. Thus
Theorem 5.20 tells us that the range of T is the column span.

• The rank of a linear transformation T : Rn→ Rm is the dimension of the range, equivalently
of the column span.

Example 5.22

Frind the rank and describe the range of the linear transformation T : R3→ R3 given by

T (x,y,z) =

 2x+ y+5z
x+2y+4z

4x+3y+11z



Solution. T has representing matrix

[T ] =

2 1 5
1 2 4
4 3 11
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The columns of [T ] are not all parallel, so we know that the column span is either a plane or all of R3.
We leave it to the reader to show that the three column vectors are coplanar. Thus the column span,
equivalently the range of T , is a plane through the origin in R3. The rank of T is two since a plane is
two-dimensional. ♠

5.2.4. Visualizing linear transformations

5.2.4.1. Linear transformations from R2 to R2

How do we visualize a linear transformation T :R2→R2? We can’t draw the graph, since both the domain
and the target space are 2-dimensional. Instead, a good way to try to visualize such linear transformations
is to draw two copies of R2, one representing the domain and the other the target space. If we want to
draw the standard coordinate axes in the two copies, we will use different labels in order to tell them apart.
E.g, we could label the axes x,y in the first copy and u and v in the second, with the u-axis horizontal and
the v-axis vertical. Sometimes, however, the axes just clutter the picture and we may choose not to draw
them. We next draw lines, squares, etc. in the first copy of R2 and draw the images under T of these lines,
squares, etc. in the second copy.

We illustrate with an example of a linear transformation T : R2→ R2 of rank 2. Let T be the linear
transformation with standard representing matrix

[T ] =
[

2 1
1 3

]

Letting v =
[

2
1

]
and w =

[
1
3
]
, then T (i) = v, T (j) = w, and

T (xi+ yj) = xv+ yw (5.3)

for all x,y.
The vectors v and w are the same vectors that we considered in Subsection 5.2.4, now written in column

form. Figure 5.1 is a copy of Figures 2.3 and 2.4 from that example. Figure 5.1(A) shows the tiling we get
of R2 with corners given by all the linear combinations of ai+bj with a and b integers, and Figure 5.1(B)
shows the analogous tiling with i and j replaced by v and w. Interpreting Equation (5.3) geometrically,
we see that the linear transformation T maps each of the squares in Figure 5.1(A) to the corresponding
parallelogram in Figure 5.1(B). (E.g., the square with lower left corner 2i+ 3j goes to the parallelogram
with lower left corner 2v+ 3w.) Horizontal lines are mapped to lines parallel to v and vertical lines are
mapped to lines parallel to w. In other words, the effect of the linear transformation is to replace the grid
of perpendicular streets in Figure 5.1(A) to the grid of streets in Figure 5.1(B). You can imagine taking a
picture of a city with the street system in Figure 5.1(A) and redrawing it in slanted fashion – all the same
houses and buildings, etc. – but everything gets slanted and stretched. In fact, we’ve drawn a picture of
a (perhaps giant!) pedestrian walking along a street in Figure 5.1(A) and the image of that pedestrian in
Figure 5.1(B). That’s the effect of T .
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(A)

(B)

Figure 5.1
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Remark 5.23
• The pictures above suggest why we use the language “linear transformation”. In the example

above, you can think of T as transforming the plane, e.g., by doing things like stretching in
certain directions and changing angles.

• Linear transformations T :R3→R3 of rank 3 can be viewed similarly, although they are more
difficult to draw. You can visualize the tiling of the plane R3 by unit cubes being transformed
to a tiling by parallelapipeds.

• For linear transformations T : R2→R2 of rank one, the two column vectors of [T ] are parallel
so the range (the column span) is only a line in R2. One can visualize collapsing the plane R2

(the domain) to a line (the range). Similarly, for a linear transformation T : R3→ R3 of rank
only 1 or 2, the range will be only a line or a plane in R3. In Exercise 5.2.15, you will see an
example given by a vector projection.

5.2.4.2. Linear transformations from R to R2 or R3

Consider a non-zero linear transformation T : R→ R2.

Example 5.24

For a specific example, suppose T has matrix

[T ] =
[
−2
−1

]
Denoting the independent variable by t, we have

T (t) =
[
−2
−1

][
t
]

or in vector notation T (t) = t〈−2,−1〉.

In Section 2.3, we saw that such an equation can be viewed as the vector equation of a line ` through
the origin in R2.

If you prefer a picture analogous to that in Figure 5.1, we can view T as transforming the real line
to the line ` as in Figure 5.2.

More generally we have:

Theorem 5.25

Vector equations of lines through the origin in R2 or R3 are given by linear transformations with
domain R and target space R2 or R3, respectively.
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R
−2 −1 0 1 2 3−3

0

T (1)

T (2)

T (3)

T (−1)

T (−2)

T (−3)

Figure 5.2

5.2.4.3. Linear transformations from R2 to R3

Linear transformations T : R2→ R3 correspond to 3× 2 matrices. Since [T ] has two columns, the rank
(the dimension of the column span) must be one of 0, 1, or 2. We will focus here on the case of rank 2.

Recall Example 5.18 and the subsequent Remark 5.19. There we saw that the linear transformation
with representing matrix

[T ] =
[

2 1
3 5
4 7

]
can be viewed as the vector equation of the plane spanned by the column vectors:

P = Span(〈2,3,4〉, 〈1,5,7〉).

Indeed, expressed in vector form rather than column form, we saw that T (s, t) = s〈2,3,4〉+ t〈1,5,7〉.
Again, if you prefer a picture analogous to Figure 5.1, you can picture the plane R2 transformed to

the plane P in R3. The standard tiling of R2 by squares, is transformed to the tiling of the plane P by
parallelograms whose sides are given by the vectors 〈2,3,4〉 and 〈1,5,7〉.

More generally,

Theorem 5.26

The vector equation of every plane through the origin in R3 is given by a linear transformation from
R2 to R3 of rank 2.
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5.2.5. Section summary

• Non-zero real-valued linear transformations are homogeneous polynomials of degree one. A vector-
valued function is a linear transformation if each of its component functions is either zero or a
homogeneous polynomial of degree one.

• The graph of any linear transformation T : R→ R is a non-vertical line through the origin in R2.

• The graph of any linear transformation T : R2→ R is a non-vertical plane through the origin in R3.

• Every linear transformation can be expressed as T (x) = [T ][x] (matrix multiplication), where [T ] is
the representing matrix of [T ].

• The range of a linear transformation T : Rn→Rm is the subspace of Rm spanned by the columns of
[T ], also called the “column span”. The “rank” of T is the dimension of the range.

• If T : Rn → Rm is a linear transformation, then the columns of [T ] are the images of the standard
basis vectors of Rn. E.g., if T : R2→ Rm, then the two columns of [T ] are T (i) (i.e., T (1,0)) and
T (j) (i.e., T (0,1)).

• The range of a non-zero linear transformation with domain R and target space R2 or R3 is a line
through the origin in R2 or R3 and the linear transformation may be viewed as giving the vector
equation of this line.

• The range of a linear transformation of rank two with domain R2 and target space R3 is a plane
through the origin in R3 and the linear transformation may be viewed as giving the vector equation
of this plane.

• You can picture a linear transformation T : R2 → R2 of rank 2 by drawing two copies of R2 and
illustrating how the first is “transformed” by T into the second one as in Figure 5.1.

Exercises

Exercise 5.2.1 Decide whether each of the following functions is a linear transformation.

(a) T (x) =−2x+5

(b) T (x,y) = x− y

(c) T (x,y) = x2 + xy+ y2

(d) T (x,y,z) =
[ x+y

y+z
]

(e) T (x,y,z) =
[

x+1
y+1
z+1

]
(f) T (x,y,z) =

[ xy
yz
zx

]
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Exercise 5.2.2 For each function T in Exercise 5.2.1 that is a linear transformation, indicate its domain
and target space, and then write down the representing matrix.

Exercise 5.2.3 Define F : R3→ R3 by

F(x) = 〈1,1,1〉×x

(the cross product of 〈1,1,1〉 with x).

(a) Check that F is a linear transformation and find its representing matrix.

(b) Find x such that F(x) is parallel to 〈1,−2,1〉.

Exercise 5.2.4 Define T : R3→ R by
T (x) = 〈1,2,4〉 ·x

(the dot product of 〈1,2,4〉 with x). Check that T is a linear transformation and write down its representing
matrix.

Exercise 5.2.5 For each of the following linear transformations T : R2→R2, draw a parallelogram tiling
analogous to Figure 5.1(b) showing the image under T of the square tiling in Figure 5.1(a). Include in
your picture the image of the pedestrian, placing him in the correct parallelogram. Be sure to make his
orientation clear and stretch or compress him as directed by T .

(a) [T ] =
[

1 2
2 1

]

(b) [T ] =
[

1 2
−2 1

]

(c) [T ] =
[
−1 −2
2 1

]

(d) [T ] =
[
−1 −2
−2 −1

]

Exercise 5.2.6 Write down the representing matrix of a linear transformation T : R→ R3 that gives the
vector equation (in the sense of Example 5.24) for the line in R3 through the points (0,0,0) and (1,2,3).

Exercise 5.2.7 Write down the representing matrix of a linear transformation T : R2→ R3 that gives the
vector equation (in the sense of Theorem 5.26 and the example that precedes it) for the plane in R3 through
the points (0,0,0), (1,2,3) and (4,1,4).

Exercise 5.2.8 Write down a linear transformation S : R2→ R such that the graph z = S(x,y) of S is the
plane in Exercise 5.2.7.

Exercise 5.2.9 For each of the following planes, write down a linear transformation T : R2→ R whose
graph z = T (x,y) is the indicated plane.
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(a) z = 5x−2y

(b) x+3y−2z = 0

(c) the plane through the origin orthogonal to the line given parametrically by x= 1+t, y= 2−3t, z=
t.

(d) the plane whose vector equation is expressed (in the sense of Theorem 5.26) by the linear transfor-
mation S : R2→ R3 whose representing matrix is

[S] =

2 1
4 5
1 0



Exercise 5.2.10 Draw the contour map of the linear transformation T (x,y) = 3x+4y.

Exercise 5.2.11 Describe the contour map of the linear transformation T (x,y,z) = 2x+ y+3z.

Exercise 5.2.12 We have talked about level sets of real-valued functions. It also makes sense to talk
about level sets of functions whose target space has higher dimension. For example, consider the linear
transformation T with matrix

[T ] =
[

1 2 1
2 1 3

]
(a) Show that the range of T is all of R2.

(b) Find the set of all (x,y,z) in R3 such that T (x,y,z) =
[

6
11

]
. Then describe your answer in words.

This is an example of a level set of T . (More generally, the level set of T corresponding to
[

k1
k2

]
in

R2 is the solution set of T (x,y,z) =
[

k1
k2

]
. )

(c) The contour map of T consists of all the level sets. Describe the contour map explicitly. (E.g., if the
level sets are lines, indicate their directions.)

Exercise 5.2.13 For each of the following, you are given the representing matrix [T ] of a linear transfor-
mation with target space R2. In each case, determine whether the range of T is a line, all of R2 or just the
origin. Also indicate the rank.

(a) [T ] =
[

1 2
2 1

]

(b) [T ] =
[

1 2
4 8

]

(c) [T ] =
[

1 2 3
4 5 1

]
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(d) [T ] =
[

1 2 3
−4 −8 −12

]

Exercise 5.2.14 For each of the following, you are given the representing matrix [T ] of a linear transfor-
mation with target space R3. In each case, determine whether the range of T is a line through the origin,
a plane through the origin, all of R3 or just the origin. Also indicate the rank.

(a) [T ] =

1 2
2 1
3 4



(b) [T ] =

 1 2 −5
−2 −4 10
3 6 −15



(c) [T ] =

1 2 3
4 5 1
1 0 1



(d) [T ] =

 1 2 3
1 0 1
3 4 7



(e) [T ] =

 1 2 3
1 0 1
3 4 1


Exercise 5.2.15 Let

a = 〈1,2,1〉.

(a) Define S : R3→ R by S(x) = compa x (the scalar projection of x on a). By writing x = 〈x,y,z〉 and
evaluating S(x), check that F is a linear transformation and write down its representing matrix.

(b) Define T : R3→ R3 by T (x) = proja (x). Find an explicit expression for T , verify that T is a linear
transformation and write down its representing matrix. (More generally, one can show that proja is
a linear transformation for any choice of a.)

(c) Write down a basis for the subspace of R3 spanned by the columns of [T ], where T is the linear
transformation in part (b). Why is this answer what you would have expected even before you
computed the matrix [T ]? (Think about what T means geometrically.)
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5.3 Linearity Properties

Outcomes
• Understand how the properties of matrix multiplication, such as the distributive law, result

in two special properties of linear transformations, called the linearity properties, that other
functions don’t have.

• Be able to state the two linearity properties as equations.

• Most important outcome: Understand the two linearity properties geometrically.

Since linear transformations are given by matrix multiplication, the properties of matrix multiplica-
tion give us some special properties of linear transformations that distinguish them from more general
functions.

The properties we will state are valid in all dimensions but you will probably find it helpful to think of
both the domain Rn and the target space Rm as R2. We will illustrate the properties with drawings in R2.

In order to state the linearity properties, we need to think of elements in both the domain and range as
vectors rather than as points.

Theorem 5.27
Let T : Rn→ Rm be any linear transformation. For each vector v in the domain Rn and each scalar
c, we have

First linearity property: T (cv) = cT (v). (5.4)

Geometric interpretation: Letting ` be the line through the origin in Rn with direction vector v, we
have:

• If T (v) 6= 0, then T maps the line ` through the origin in Rn with direction vector v to the line
through the origin in Rm with direction vector T (v). Moreover, it does so in a proportionate
way as illustrated in Figure 5.3; i.e, points equally spaced along ` are mapped to points equally
spaced along the image of `.

• If T (v) = 0, then T maps the entire line ` to the origin in Rm.

Proof. We have

T (cv) = [T ][cv] = c[T ][v] = cT (v)

where the second equality comes from the fact that scalars pull out of matrix multiplication. ♠
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Figure 5.3

Before stating the second linearity property, we introduce notation:

Notation 5.28
If v and w are not parallel, then Par(v,w) will denote the parallelogram with sides v and w.

Theorem 5.29
Let T : Rn→ Rm be any linear transformation. For every pair of vectors v and w in the domain Rn,
we have

Second linearity property: T (v+w) = T (v)+T (w). (5.5)

Geometric interpretation: Let v and w be any pair of vectors in the domain Rn that aren’t paral-
lel. Except in the special case that T (v) and T (w) happen to be parallel, T maps the diagonal of
Par(v,w) to the diagonal of Par(T (v),T (w)). See Figure 5.4.
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Figure 5.4

One can combine the two linearity properties to obtain:

Corollary 5.30

A linear transformation takes linear combinations of vectors to the corresponding linear combina-
tions of their images, i.e.,

T (av+bw) = aT (v)+bT (w)

for all vectors v and w in the domain and all scalars a and b.

The same property holds for linear combinations of any number of vectors. E.g.,

T (au+bv+ cw) = aT (u)+bT (v)+ cT (w).

We have already seen the special case in which u = i, v = j and w = k in Theorem 5.20.

Example 5.31

Suppose that T : R2→ R3 is a linear transformation and that

T (1,2) =

4
7
8

 and T (3,1) =

1
0
2


Find T (5,5) and T (1,1).

Solution. We think of the input as vectors rather than points. We first express the vector 〈5,5〉 as a linear
combination of 〈1,2〉 and 〈3,1〉. We leave it to the reader to solve for the coefficients, obtaining

〈5,5〉= 2〈1,2〉+ 〈3,1〉.

By Corollary 5.30, we thus have

T (5,5) = 2T (1,2)+T (3,1) = 2

4
7
8

+
1

0
2

=

 9
14
18
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The easiest way to find T (1,1) now is to use the fact that 〈1,1〉 = 1
5〈5,5〉. Thus by the first linearity

property,

T (1,1) =
1
5

T (5,5) =

 9/5
14/5
18/5


♠

Example 5.32

Suppose you are told only that T : R2→ R3 is a linear transformation and that

T (2,1) =

1
4
1

 and T (1,1) =

3
5
2

 .

Find T (1,0) and T (0,1). Then write down the representing matrix of T .
Note: Once you’ve done this, you will know the linear transformation T completely!

Solution. First write i as a linear combination of 〈2,1〉 and 〈1,1〉:

i = 〈1,0〉= 〈2,1〉−〈1,1〉.

By Corollary 5.30, we thus have (expressing the inputs and outputs of T as vectors):

T (i) = T (〈2,1〉)−T (〈1,1〉) =

1
4
1

−
3

5
2

=

−2
−1
−1


Similarly, j = 〈0,1〉= 2〈1,1〉−〈2,1〉, so

T (j) = 2T (〈1,1〉)−T (〈2,1〉) = 2

3
5
2

−
1

4
1

=

5
6
3



Thus by Theorem 5.20, we have [T ] =

 | |
T (i) T (j)
| |

=

−2 5
−1 6
−1 3

 ♠
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Remark 5.33: Every function that satisfies the linearity properties is a linear transformation

We have seen that linear transformations satisfy the two linearity properties T (cv) = cT (v) and
T (v+w) = T (v)+T (w). In fact, linear transformations are the only functions that satisfy both lin-
earity properties. In other words, to check whether a function is a linear transformation, it’s enough
to show that it satisfies the linearity properties. In more advanced courses, linear transformations
are defined to be functions that satisfy the linearity properties.

Aside: To see why linear transformations are the only functions that satisfy these properties, suppose
for example that F :R2→R2 is a function that satisfies the linearity properties. We will show that F
is a linear transformation. Write F(i) = [a

b ] and F(j) = [ c
d ]. (Here a,b,c,d are specific real numbers

determined by F .) Since we are assuming that F satisfies the two linearity properties, we have

F(xi+ yj) = F(xi)+F(yj) = xF(i)+ yF(j) = x
[

a
b

]
+ y
[

c
d

]
=

[
a c
b d

][
x
y

]
.

(The first equality comes from the second linearity property and the second inequality comes from
the first linearity property.)
Thus F is the linear transformation with representing matrix [a c

b d ].

5.3.1. Section summary

• The first linearity property says that T (cv) = cT (v) for all vectors v in the domain and all scalars c.
Geometrically, this says that the image of a line through the origin is another line through the origin,
scaled proportionately. (Special case: if T (v) = 0, then the image of the line with direction vector v
is just the origin rather than another line.)

• The second linearity property says that T (v+w) = T (v)+T (w). This says that the image of the
diagonal of the parallelogram Par(v,w) is the diagonal of Par(T (v),T (w)).

(The formula T (v+w) = T (v)+T (w) is valid always, but our geometric interpretation only makes
sense when T (v) and T (w) are not parallel.)

• The two linearity properties together tell us that T takes linear combinations of vectors to linear
combinations of their images: T (av+bw) = aT (v)+bT (w).

• Linear transformations are the only functions that satisfy the linearity properties; this is one of the
reasons that linear transformations are pretty special!
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Exercises

Exercise 5.3.1 Draw a sketch analogous to Figure 5.4 illustrating that T (v−w) = T (v)−T (w), when T
is a linear transformation.

Exercise 5.3.2 Define F : R3→ R3 by

F(x) = 〈1,2,3〉×x

. Use properties of the cross product to verify that T satisfies the two linearity properties.

Exercise 5.3.3 Let T : R2 → R2 be a linear transformation, let v = 〈4,1〉 let w = 〈2,1〉, and let u =
2v+3w = 〈14,5〉. If

T (4,1) =
[

2
5

]
and T (2,1) =

[
1
2

]
,

find T (14,5).

Exercise 5.3.4 Suppose that T : R2→R3 is a linear transformation and that T (1,1) =
[

2
1
5

]
and T (2,3) =[

1
2
4

]
. Find the standard representing matrix [T ].

Exercise 5.3.5 Suppose that T : R2→R2 is a linear transformation and that T (2,3) =
[

4
1

]
and T (1,2) =[

2
0
]
. Find the standard representing matrix [T ].

5.4 Example: Rotations and Reflections of R2

Outcomes
• Understand what we mean by rotations about the origin and reflections across lines.

• Gain a geometric understanding of why rotations and reflections are linear transformations.

• Be able to write down the representing matrices of rotations and reflections.

Many geometrically natural functions can be seen to be linear transformations. In Exercise 5.2.15, we
saw that projections are linear transformations. In that exercise, you first wrote down the explicit formula
for the projection and then recognized it as a linear transformation. In this subsection, we are going to take
a different approach. We begin with a geometric transformation, verify geometrically that it satisfies the
linearity properties and thus is a linear transformation, and use this information to find an explicit formula.
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5.4.1. Rotations

Definition 5.34

Fix an angle θ . Define Rotθ : R2→R2 to be the function that rotates each vector through the angle
θ about the origin.

In Figure 5.5, we have illustrated the effect of Rotπ/3 (counterclockwise rotation through angle π

3 ) on
a vector v.

Figure 5.5

Rotations arise extensively in many different settings. An engineer may need to figure out how to
rotate a robot’s arm. In computer graphics, all or part of a picture may need to be rotated. The reader can
think of many more applications.

Here is our plan to find an exact expression for Rotθ .

Step 1: First show geometrically that Rotθ is a linear transformation.

Step 2: Compute Rotθ (i) and Rotθ (j). These will be the columns of the representing matrix [Rotθ ] and
we’re done!

Note that the second step would not have been enough without the first. For general functions F :
R2→ R2, knowing F(i) and F(j) does not tell you anything about F(x) for other values of x.
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v

v+ww

Rot(v)

Rot(v)+Rot(w)

Rot(w)

Figure 5.6

Step 1. To see that Rotθ is a linear transformation, Remark 5.33 tells us that we just need to check that
Rotθ satisfies the two linearity properties in Theorems 5.27 and 5.29. We do this geometrically. We leave
the first property to the reader; i.e., check that rotations take lines through the origin to lines through the
origin in a proportionate way. For the second linearity property, see Figure 5.6. There we have illustrated
the effect of rotation through an angle slightly larger than π

2 . Even though we normally draw the image
vectors on a separate set of axes, here we have drawn them on the same set of axes to make it more
obvious how all the vectors are rotated. As the drawing shows, parallelograms rotate to parallelograms
and the diagonal of the first parallelogram goes to the diagonal of the rotated one.
Step 2. Compute Rotθ (i) and Rotθ (j). See Figure 5.7. (We have rotated through an acute angle θ in
Figure 5.7. The reader is encouraged to draw pictures using other angles as well.) We obtain:

Rotθ (i) =
[

cos(θ)
sin(θ)

]
Rotθ (j) =

[
−sin(θ)

cos(θ)

]
(5.6)

i

j

Rotθ (i)

Rotθ (j)

(cos(θ),sin(θ))
(−sin(θ),cos(θ))

θ
θ

Figure 5.7

From Equation (5.6), we can write down the representing matrix for Rotθ :

[Rotθ ] =
[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(5.7)



5.4. Example: Rotations and Reflections of R2 117

Example 5.35

Find the result of rotating the point (6,2) through an angle of −π

3 about the origin.
Solution. We first find a general formula for the rotation Rot−π/3 using Equation (5.7).

[Rot−π/3] =

[
1
2

√
3

2
−
√

3
2

1
2

]

Thus

Rot−π/3(6,2) =

[
1
2

√
3

2
−
√

3
2

1
2

][
6
2

]
=

[
3+
√

3
−3
√

3+1

]
Thus the point (6,2) is rotated to the point (3+

√
3,−3

√
3+1). ♠

5.4.2. Reflections

You are probably familiar with the notion of reflecting a point across the x-axis or the y-axis. For example,
if we reflect the point (2,5) across the y-axis, we get the point (-2,5). More generally, reflection across the
y-axis is given by the function T (x,y) =

[−x
y
]
, which you will recognize to be a linear transformation.

Similarly, if ` is any line through the origin in R2 and P = (x,y) is any point in R2, we obtain the
reflection of P across ` as follows:

Figure 5.8

• If P doesn’t lie on `, draw a perpendicular from P to ` and continue along it until you reach a point Q
equidistant from `. The point Q is the reflection of P across `. (In other words, Q is the unique point
such that ` is the perpendicular bisector of the segment PQ. The perpendicular segment appears in
red in Figure 5.8.)

• If P happens to lie on `, then reflection doesn’t change P.
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You can also visualize reflection by drawing the position vector of P. The position vector of the
reflection of P makes the same angle with ` and is the same length as that of P. See Figure 5.8.

Note the symmetry here: P and Q are reflections of each other acros `.

Notation 5.36

Let `θ denote the line through the origin in R2 that makes the angle θ with the positive x-axis. (It
doesn’t matter in any of the computations, but you can always choose θ to lie in the interval [0,π)
if you wish.) Denote by Refθ : R2→ R2 the function that sends every point to its reflection across
`θ .

In Figure 5.9, we have drawn a line `θ and various regions such as a pentagon and a figure of a duck.
The images under Refθ of the various regions are drawn in the same color. (Note: we haven’t specified
which is the original and which is the image since each is the image of the other under reflection!)

Figure 5.9

In Figure 5.10(A), we have drawn sets that passes through `θ ; Figure 5.10(B) shows their images under
Refθ .
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(A) (B)

Figure 5.10

We can now follow the same two step process as we did for rotations to see that Refθ is a linear
transformation and to find its matrix.
Step 1. Refθ is a linear transformation.

We leave it to the reader to draw pictures illustrating that reflections carry lines through the origin
proportionately to lines through the origin and similarly for parallelograms.
Step 2. We compute Refθ (i) and Refθ (j).

Figure 5.11
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From Figure 5.11, we see that

Refθ (i) =
[

cos(2θ)
sin(2θ)

]
(5.8)

The computation of Refθ (j) is a bit trickier. One can figure out the angles directly from Figure 5.11.
A way to avoid that computation, however, is to observe that Refθ (j) ⊥ Refθ (i), as one can see from
the picture. (In fact, reflections always preserves shapes, so the angle between the reflected vectors is
the same as the angle between the original vectors.) Since there are only two unit vectors orthogonal to
〈cos(2θ), sin(2θ)〉, namely ±〈−sin(2θ), cos(2θ)〉, one only has to determine the sign. We get

Refθ (j) =
[

sin(2θ)
−cos(2θ)

]
We conclude:

[Refθ ] =

[
cos(2θ) sin(2θ)
sin(2θ) −cos(2θ)

]
(5.9)

(Aside: You might notice that if we were to change the signs of the entries in the second column, we
would get the matrix for Rot2θ ! Rotations and reflections are clearly different, so this confirms that we
made the correct choice of sign when we computed Refθ (j).)

Remark 5.37

The analogous concept in 3 dimensions is reflection across a plane in R3. For example, when you
look at yourself in a mirror, you are seeing your reflection across the plane of the mirror as in
Figure 5.12. Here the plane of reflection (the mirror) is perpendicular to the plane of the paper. If
we think of the x-axis as coming towards us out of the paper, the y-axis as horizontal and the z-axis
as vertical, then we are reflecting across the xz-plane.

Figure 5.12
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5.4.3. Section summary

• We saw that rotations and reflections are linear transformations by showing geometrically that they
satisfy the two linearity properties.

• We then found their representing matrices by finding the columns T (i) and T (j).

• Now that we have their representing matrices, we can rotate any vector (or point) about the origin or
reflect any vector (or point) across any line through the origin and write down the result explicitly.

Exercises

Exercise 5.4.1 Draw the capital letter R with its lower left corner at the origin. Then:

(a) Draw it’s image under Rotθ , where θ = 2π

3 .

(b) Draw it’s image under Refθ , where θ = 2π

3 .

Exercise 5.4.2

(a) Write down the representing matrix of the rotation Rot π

4
.

(b) Find the result of rotating each of the points (1,3) and (−5,4) through an angle of π

4 about the
origin.

(c) Write down the representing matrix of the reflection Ref 5π

6
.

(d) Find the result of reflecting each of the points (1,3) and (−5,4) across the line ` 5π

6
.

Exercise 5.4.3 Find the result of rotating the point (2,5) through an angle of 4π

3 about the origin.

Exercise 5.4.4 Find the result of reflecting the points (1,3) and (−5,4) across the line y =
√

3x.

Exercise 5.4.5 For each of the following, identify the linear transformation whose representing matrix is
given. If it is a rotation, specify the angle of rotation. If it is a reflection across a line, indicate the angle
that the line makes with the positive x-axis.

(a)

−
1√
2
− 1√

2

1√
2
− 1√

2



(b)

−
1√
2
− 1√

2

− 1√
2

1√
2
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(c)
[

0 1
1 0

]

(d)
[

0 −1
1 0

]

Exercise 5.4.6 Draw pictures similar to that in Figure 5.6 to illustrate geometrically that reflection across
a line ` through the origin is a linear transformation. For the line `, choose any line other than the x
or y-axes. Be sure to illustrate both the linearity properties, using separate drawings for each of the two
properties.

5.5 What the Determinant of the Representing Matrix Tells
Us

Prerequisite 5.38

Before reading this section, it is important to recall how to compute the area of a parallelogram
Par(v,w) in R2 with sides given by vectors v = 〈a,b〉 and w = 〈c,d〉. You have learned that the area
is the absolute value of the determinant of the matrix with rows v and w, i.e, the matrix

[
a b
c d

]
. Thus

the area is |ad−bc|. While you learned to make v and w the rows of the matrix, you get the same
result if you instead make them the columns, since det([a c

b d ]) = ad−bc = det(
[

a b
c d

]
).

Outcomes
• Understand what the determinant of the representing matrix of a linear transformation T tells

you about how the area of a region in the domain and the area of its image are related.

• Understand what the determinant tells you about orientation.

If T :R2→R2 is a linear transformation, then [T ] is a 2×2 matrix, and we can compute its determinant.
We will see that the determinant contains a lot of information about the linear transformation.

5.5.1. Area

Let’s return to the example of the linear transformation we looked at in Subsection 5.2.4. We have

[T ] =
[

2 1
1 3

]
Letting v = 〈2,1〉 and w = 〈1,3〉 (the two column vectors of [T ], we saw that T maps the grid of unit
squares to the grid of parallelograms Par(v,w), i.e., parallelograms with sides v and w, as in Figure 5.13.
(This is the same illustration that appeared in Subsection 5.2.4, repeated here for convenience.)
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As noted in the Prerequisite 5.38, we have

Area of Par(v,w) = |det(
[

2 1
1 3
]
)|= |det([T ])|= 5.

Thus each of the parallelograms in Figure 5.1(B) has area 5. In other words, T maps the unit squares in
the first grid to parallelograms of area 5.

(A)

(B)

Figure 5.13

One can in fact say much more:

• The person shown in the second grid is five times as big as the person in the first grid.

• More generally, if you take any region R in the domain (e.g., a disk, a triangle„„), the area of the
image of R will be 5 times larger than the area of R.
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Theorem 5.39: Areas of Images

Let T : R2 → R2 be any linear transformation, and let R be any region in R2. Then the area of
the image of R under T is given by |Det[T ]|Area(R). In words, to get the area of the image of R,
multiply the area of R by the absolute value of the determinant of [T ].

The analogous theorem with “area” replaced by “volume” holds for linear transformations T : R3→
R3.

Example 5.40

• If you visualize a rotation, you can see that the area of a region doesn’t change when you
rotate it. Let’s see that this observation is consistent with Theorem 5.39. In Subsection 5.4.1,

we saw that the representing matrix of Rotθ is
[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]
. We have

det
[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]
= cos2(θ)+ sin2(θ) = 1.

Thus Theorem 5.39 tells us that when we rotate a region R, the area doesn’t change, just as
our geometric intuition told us.

• Similarly, we saw in Subsection 5.4.2, that reflection across a line through the origin has

representing matrix of the form det(Refθ ) = det
[

cos(2θ) sin(2θ)
−sin(2θ) cos(2θ)

]
. We then get

det(Refθ ) =−1 so |det(Refθ )|= 1.

This again agrees with our geometric understanding: reflecting a region across a line doesn’t
change its area.

Example 5.41

Let T : R2 → R2 be a linear transformation. We saw in Theorem 5.20 that the range of T is the
subspace of R2 spanned by the columns of [T ]. If the two columns of [T ] are parallel (and not both
zero), then the range is a line. The image of any region in the domain must be contained in this line
and thus have area zero. Let’s check whether this agrees with Theorem 5.39. Since the two columns
of [T ] are parallel, [T ] is of the form

[T ] =
[

a ka
c kc

]
so

det([T ]) = a(kc) = c(ka) = 0.

Thus Theorem 5.39 confirms that the image of any region has area zero.
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5.5.2. Orientation

The sign of the determinant also gives us valuable information. Note that the sign only makes sense if the
determinant is non-zero, i.e., if T has rank 2. (See the previous example.) This is the case precisely when
T (i) and T (j) are non-parallel.

Definition 5.42
We say that an ordered pair (v,w) of non-parallel vectors is positively oriented if the smaller of
the two angles from v to w is the one that goes counterclockwise as in Figure 5.14). We say it is
negatively oriented if the smaller angle is the one that goes clockwise.

For example, the ordered pair (i, j) is positively oriented and the ordered pair (j, i) is negatively ori-
ented.

Figure 5.14

Definition 5.43: Orientation-preserving/reversing

A linear transformation T : R2→ R2 of rank two is said to be orientation-preserving (respectively,
orientation-reversing) if the ordered pair (T (i),T (j)) is positively oriented (respectively, negatively
oriented).

For linear transformations of rank less than two, we can’t talk about orientation since T (i) and T (j)
are parallel in that case. (Recall these are the columns of [T ].)
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Example 5.44

By looking at drawings, we see:

• Let T be the linear transformation with representing matrix [T ] =
[

2 1
1 3

]
and illustrated in

Figure 5.13. Recall that T (i) and T (j) are the vectors labelled v and w, respectively, in
Figure 5.13. Observe that w is counterclockwise of v, so T is orientation-preserving.

• Rotations Rotθ are orientation-preserving.

• Reflections Refθ are orientation-reversing. (This is analogous to the fact that your reflection
in a mirror is oriented oppositely to yourself.)

Theorem 5.45: Sign of Determinant and Orientation

Let T : R2→ R2 be a linear transformation.

1. If Det[T ]> 0, then T is orientation-preserving.

2. If Det[T ]< 0, then T is orientation-reversing.

The reader is encouraged to compute the determinants of the representing matrices of the linear trans-
formations in Example 5.44 and verify that they are consistent with Theorem 5.45.

While we only have to check two vectors T (i) and T (j) to determine whether T is orientation-
preserving or reversing, it turns out that orientation-preserving (respectively, reversing) linear transfor-
mations preserve, respectively reverse, orientation in many ways as the next two propositions indicate.

Proposition 5.46: Circles to Ellipses

Let T : R2→ R2 be a linear transformation of rank 2. Then the image under T of every circle in
R2 is an ellipse. If T is orientation-preserving (respectively, reversing), then as a point moves coun-
terclockwise around a circle, the image under T moves counterclockwise (respectively, clockwise)
around the image ellipse.

Circles are themselves ellipses. For rotations and reflections, the image of any circle is actually a
circle. For the linear transformation in Subsection 5.2.4, on the other hand, the images of circles are not
circles but, as guaranteed by the proposition, they are ellipses.

Proposition 5.47

Let T : R2→ R2 be a linear transformation of rank 2. Suppose that T is orientation-preserving (re-
spectively, reversing). If (v,w) is any ordered pair of non-parallel vectors in R2, then (T (v),T (w))
has the same (respectively, opposite) orientation as (v,w).

Thus an orientation-preserving linear transformation preserves the direction of all angles.
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5.5.3. Section summary

Let T : T2→ R2 be any linear transformation.

• Given any region R in the domain, let’s write T (R) for the image of R. Then to find the area of T (R),
you just need to multiply the area of R by |det(T )|. In particular, the area of every region (disk,
parallelogram, triangle,....) in R2 expands or shrinks by the same ratio |det(T )|.

• If det(T )> 0, then T preserves the orientation of all angles. In other words, if w is counterclockwise
from v, then T (w) is counterclockwise from T (v). If det(T )< 0, then T reverses the orientation of
all angles.

Exercises

Exercise 5.5.1 Let T be a linear transformation with representating matrix[
4 1
2 3

]
.

(a) Find the area of the image under T of the unit square.

(b) Find the area of the image under T of a disk whose radius is 3.

(c) Decide whether T is orientation-preserving or reversing by computing the determinant.

(d) Verify your answer to part (c) by drawing the vectors T (i) and T (j). Explain.

5.6 Composition of Linear Transformations

Definition 5.48: Composition of Functions

Given functions F : Rn→ Rm and G : Rm→ Rk (so the range of F is contained in the domain of
G), we define the composition of G with F , denoted G◦F by

G◦F(x) = G(F(x)).

You are already familiar with the composition of functions from R to R. E.g., if f (x) = x2 and g(x) =
sin(x), then

g◦ f (x) = g( f (x)) = g(x2) = sin(x2).
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When you first learned about compositions of real-valued functions on R, you might have found it easier
to change the name of the variable in the second function, say writing g(u) = sin(u) and then writing
g( f (x)) = g(u) = sin(u) where u = x2.

Example 5.49

Let

F(x,y) =

 x2y
x+2y

y3

 and G(x,y,z) = sin(x+ z)y4.

The range of F is contained in R3, which is the domain of G; thus we can form the composition
G◦F . Find this composition explicitly.

Solution. We need to compute G ◦F(x,y) = G(F(x,y)). You might find it easier to rename the variables
in the domain of G, say u,v,w, and write G(u,v,w) = sin(u+w)v4. Then G(F(x,y)) = G(u,v,w) where
u = x2y, v = x+2y, and w = y3. This yields,

G(F(x,y)) = G(x2y,x+2y,y3) = sin(x2y+ y3)(x+2y)4.

♠

For linear transformations, the representing matrices simplify the process of composition.

Theorem 5.50: Composing Linear Transformation

Suppose that T : Rn→Rm and S : Rm→Rk are linear transformations. Then the composition S◦T
is also a linear transformation, and its representing matrix is the product of the representing matrices
of S and T , i.e.,

[S◦T ] = [S][T ].

Proof. We have
S◦T (x) = S(T (x)) = [S] ([T ] [x]).

Since matrix multiplication is associative, we have [S] ([T ] [x]) = ([S] [T ]) [x]. Substituting this into the
previous equation, we obtain

S◦T (x) = ([S] [T ]) [x].

Thus S ◦ T can be expressed as multiplication by the matrix [S][T ]. This tells us that S ◦ T is a linear
transformation and its representing matrix is [S][T ].

♠

Example 5.51

Let

T (x,y) =
[

5x+3y
x+ y

]
and S(x,y,z) =

[
2x+ y+4z

x+2z

]
Does either of S◦T or T ◦S make sense? If so, compute it.
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Solution. First a note about the language being used here: When we ask whether a composition F ◦G
“makes sense”, we are asking whether the range of G is contained in the domain of F . If the answer is
yes, then the composition makes sense and we can compute it. If the answer is no, then we can’t form the
composition F ◦G.

In this example, we have T : R2→ R2 and S : R3→ R2. The composition S ◦T does not make sense,
since the range of T lies in R2, whereas the domain of S is R3. However the composition T ◦S does make
sense. Writing down the representing matrices of T and S and multiplying, we get

[T ◦S] =
[

5 3
1 1

][
2 1 4
1 0 2

]
=

[
13 5 26
3 1 6

]
Thus

T ◦S(x,y,z) =
[

13x+5y+26z
3x+ y+6z

]
♠

Now for a more interesting example:

Example 5.52: Composing Rotations

Consider two rotations of R2 about the origin, say Rotα and Rotβ as in Definition 5.34. Since the
domain and range of both rotations are R2, both compositions Rotα and Rotβ make sense. Find
them.

Solution. Before we actually compute, let’s THINK GEOMETRICALLY! You actually know the answer
without doing any computation! (Think about it on your own before reading the next sentence.)

If you first rotate x through angle β and then rotate the result through angle α , it’s the same as rotating
x through angle α +β as in Figure 5.15. Thus

[Rotα ◦Rotβ ] =
[

cos(α +β ) −sin(α +β )
sin(α +β ) cos(α +β )

]
(5.10)

by Equation (5.7) in Subsection 5.4.1

Now let’s compute the composition using matrix multiplication and compare with our answer above:

[Rotα ◦Rotβ ] = [Rotα ][Rotβ ] =
[

cos(α) −sin(α)
sin(α) cos(α)

][
cos(β ) −sin(β )
sin(β ) cos(β )

]

=

[
cos(α)cos(β )− sin(α)sin(β ) −cos(α)sin(β )− sin(α)cos(β )
sin(α)cos(β )+ cos(α)sin(β ) −sin(α)sin(β )+ cos(α)cos(β )

]
(5.11)

Stare at this for a second and compare with Equation (5.10). What do you notice? If you ever forget
the trig formulas for the sine and cosine of the sum of two angles, rotation matrices are a great way to
reconstruct them!

♠
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Figure 5.15

We note – thinking geometrically again – that it doesn’t matter which way you compose the two
rotations. If you instead rotate first through angle α and then through angle β , you’ll get the same result
as in the example. In terms of the matrices, this says that the representing matrices of different rotations
about the origin commute with each other, as you can easily check. In general though, when composing
two linear transformations, you need to be careful to multiply the matrices in the correct order. If only one
of the compositions S ◦T or T ◦ S makes sense, then the size of the matrices will only allow them to be
multiplied in the correct order. But extra caution is needed when both make sense.

Exercises

Exercise 5.6.1 Let

R(x,y) =

2x+ y
x− y
5x

 S(x,y) =
[
−3x− y

x+ y

]
and T (x,y,z) =

[
x+ y+ z

y− z

]

Decide whether each of the following compositions makes sense.

(a) R◦S

(b) S◦R

(c) R◦T

(d) T ◦S

(e) R◦S◦T
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(f) T ◦S◦R

Exercise 5.6.2 Find the resulting linear transformation and write down its standard representating matrix
for each of the compositions in Exercise 5.6.1 that makes sense.

Exercise 5.6.3 Let

T (x,y) = 3x+4y and S(x,y,z) =
[

x+2y
3x+ y+2z

]
.

(a) Compute T ◦S(x,y,z) directly without using matrices.

(b) Write down the representing matrices [T ] and [S] and use matrix mutliplication to compute [T ◦S].

(c) Verify that your answers to (a) and (b) agree.

Exercise 5.6.4 Let T be the reflection of R2 across the line `θ where θ = π

3 . Find T ◦T .

Exercise 5.6.5 Show that for any reflection T of R2, T ◦ T is the identity transformation. (See Exam-
ple 5.16 for the definition of the identity transformation.)

Exercise 5.6.6 Consider two rotations of R2 about the origin, Rotα and Rotβ , where α = π

4 and β =−π

4 .
Use matrix multiplication to show that Rotα ◦Rotβ is the identity transformation. Then give a geometric
explanation, i.e., explain how you could have known that this composition would give you the identity
without doing the computation.

Exercise 5.6.7 Let v = 〈1,2,1〉 and let T (x,y,z) = projv 〈x,y,z〉.

(a) Write down the standard representing matrices of T and of T ◦T .

(b) Compare the two matrices in (a). What do you notice? (Answer: they are the same! If you don’t see
this, go back and check your computation in part (a).)

(c) Give a geometric explanation of part (b). I.e., use the geometry of projections to explain how you
could know that the relationship in part (b) would hold before even computing.

Exercise 5.6.8 Let T be the linear transformation in problem 7, let w = 〈2,−1,0〉, and let S(x,y,z) =
projw 〈x,y,z〉.

(a) Write down the standard representing matrices of S and of S◦T .

(b) What do you notice about S ◦T . (Answer: it’s zero! If you didn’t get this, go back and check your
computations.)

(c) Give a geometric explanation of the observation in part (b). I.e., using the geometry of projections,
how could you know that the relationship in part (b) would hold before even computing? (Hint:
what is the angle between v and w?)
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Exercise 5.6.9

(a) Find the representing matrix of the linear transformation T = Rot π

6
◦Ref0 ◦Rot(− π

6 )
. (Here Ref0

denotes reflection across the x-axis.)

(b) Identify the linear transformation T in part (a). (It should be a reflection. Across what line?)

(c) Give a geometric explanation of parts (a) and (b). I.e., explain geometrically why the composition
in part (a) should result in the reflection identified in part (b).

5.7 Affine Transformations

We hope that the previous sections have conveyed the simplicity and geometric appeal of linear transfor-
mations. Even ignoring the especially nice ones like rotations, try to imagine trying to visualize a function
such as F(x,y) = (sin(xy)ey,

√
x2y− y4) and contrast with the relative ease with which we visualized in

Figure 5.1 the rather generic linear transformation in Subsection 5.2.4.
You might have wondered initially why a function such as f (x) = 2x+5 is not called a linear function

or a linear transformation, given that its graph is a straight line. Why do we not allow constant terms? The
answer is quite simple: if we add in constants then we loose all the advantages afforded by the fact that
linear transformations are given by matrix multiplication. We also loose the linearity properties. (One still
gets reasonably nice analogues of the linearity properties when constants are added in, but they’re not as
elegant and nice to work with.)

However, functions that are given by adding constants to linear transformations do have a special name.
They are called affine transformations.

Definition 5.53: Affine transformations
An affine transformation F : Rn→Rm is any function of the form F(x) = T (x)+b, where T : Rn→
Rm is a linear transformation and b is a fixed element of Rm.

Example 5.54

The function F : R3→ R2 given by

F(x,y,z) =
[

2x+ y− z+7
x+ z−5

]
is an affine transformation since

F(x,y,z) =
[

2x+ y− z
x+ z

]
+

[
7
−5

]
= T (x,y,z)+b

where T (x,y,z) =
[2x+y−z

x+z

]
and b =

[ 7
−5
]
.
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Example 5.55

The plane through the point (1,2,4) parallel to the plane z = 2x+3y (or 2x+3y−z = 0) has normal
vector 〈2,3,−1〉 and thus is given by 2(x−1)+3(y−2)− (z−4) = 0 or

z−4 = 2(x−1)+3(y−2).

We can rewrite this as
z = T (x,y)+b

where T is the linear transformation T (x,y) = 2x+3y and b =−4.

Preview of Things to Come 5.56

In single variable calculus, you approximated a function f :R→R near a point x0 by its tangent line
y−y0 = m(x−x0). If you combine all the constant terms, you can write it in the form y = mx+b, so
you’re approximating f by an affine function h(x) = mx+b. (It’s usually more convenient though
to leave it in the form y− y0 = m(x− x0) since you’re working near the point (x0,y0).)
The real work in finding the tangent line was in finding its slope m = f ′(x0). Once you have the
slope, you can quickly write down the tangent line. We can rephrase this as saying that the real
work was finding the linear part T (x) = mx of the tangent approximation. Adding in b or writing in
the form y− y0 = m(x− x0) is easy from there. The effect of adding the constant just translates the
line so it passes through the point (x0,y0).
We will soon be defining derivatives of functions F : Rn → Rm at points x0 of Rn. They will be
expressed as matrices, denoted [F ′(x0)] and can also be viewed as linear transformations. (If the
dimension n and m of the domain and target space are both one, the derivative will be the familiar
notion, just viewed as a 1×1 matrix.) Once we have the derivative, we can easily add the appropriate
constant to the corresponding linear transformation in order to obtain an approximation of F near
x0.

Exercises

Exercise 5.7.1 For each of the following functions, decide whether it is an affine transformation. If so,
write it explicitly as the sum of a linear transformation and a constant vector b.

(a) F(x) =

 x+1
2x

100x−50


(b) F(x) =

[
x2 + x
−x

]
(c) F(x,y) = x+ y+1



134 Linear Transformations

(d) F(x,y) =
[

xy+1
−xy+1

]

(e) F(x,y,z) =

x− y−1
y− z−1
z− x−1


(f) F(x,y,z) =

[
xyz

z2 +1

]

Exercise 5.7.2 Express each of the following planes explicitly as the graph of an affine transformation
F : R2→ R, i.e., write it in the form z = T (x,y)+b where T : R2→ R is a linear transformation and b is
a real number.

(a) z−5 = 2(x+1)+4(y−2)

(b) 3x+4y+5z = 10

(c) 2(x−1)+3y+2(z−3) = 0

Exercise 5.7.3 Show that if F(x,y) = T (x,y)+b is an affine transformation with b 6= 0, then F does not
satisfy the linearity properties.



6. Derivatives

6.1 Derivatives of real-valued functions of two variables

Motivation
In this section we will consider real-valued functions f (x,y) of two variables. In Section 4.1, we
defined directional derivatives, and in Section 4.8, we defined (at least informally) what it means
for a surface to have a tangent plane. We then defined f to be differentiable at a point (x0,y0) if its
graph has a tangent plane at (x0,y0, f (x0,y0)). However, we still haven’t said what we mean by the
derivative of f . We address that now.

Outcomes
• Understand and be able to compute derivatives of real-valued functions of two variables.

• Learn an easy way to compute directional derivatives of differentiable functions.

• Be able to do word problems involving related rates.

135
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6.1.1. Introducing the derivative

Key Idea 6.1: What information should the derivative give us?

• For a real-valued differentiable function f of one variable, you learned in single-variable
calculus that the derivative of f ′(x0) is the slope of the tangent line to the graph of f at
(x0, f (x0). Once you know the slope (and of course the point (x0, f (x0)), you have all the
information you need to write down the tangent line

y− y0 = f ′(x0)(x− x0). (6.1)

• For a differentiable function of two variables, we analogously want the derivative at (x0,y0)
– along with the point (x0,y0, f (x0,y0)) – to tell us precisely the information needed to write
down the tangent plane. As we have seen, any plane in R3 that is not vertical (i.e., not parallel
to the z axis) can be written in the form

z− z0 = a(x− x0)+b(y− y0).

In contrast to lines where we needed only a single real number (the slope), we now need
two real numbers a,b in order to obtain the tangent plane. Thus, in contrast to the functions
studied in single variable calculus, the derivative of f will not be a single real number but
instead must provide us two real numbers a,b.

Assume that f is differentiable at (x0,y0). By Theorem 4.12, its tangent plane at (x0,y0,z0), where
z0 = f (x0,y0), is given by

z− z0 = fx(x0,y0)(x− x0) + fy(x0,y0)(y− y0).

We can write the tangent plane in matrix form:

[z− z0] =
[

fx(x0,y0) fy(x0,y0)
][x− x0

y− y0

]
(6.2)

Notice that the matrix
[

fx(x0,y0) fy(x0,y0)
]

gives us the two items of information we need to determine
the tangent plane and thus plays the same role as the slope of the tangent line in Equation (6.1).
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Definition 6.2: Derivative
• Let f (x,y) be a real-valued function and assume that f is differentiable at (x0,y0). Then we

define the derivative of f at (x0,y0), denoted both by [D f(x0,y0)] and [ f ′(x0,y0)] to be the matrix

[D f(x0,y0)] = [ f ′(x0,y0)] =
[

fx(x0,y0) fy(x0,y0)
]

.

• We will denote by D f(x0,y0) the linear transformation whose matrix is [D f(x0,y0)] =[
fx(x0,y0) fy(x0,y0)

]
.

Aside: In more advanced texts, the derivative is defined to be the linear transformation D f(x0,y0),
and the matrix [D f(x0,y0)] is then called the “derivative matrix” or the “Jacobian matrix” (after the
mathematician Jacobi).

If we write

[x] =
[

x
y

]
and [x0] =

[
x0
y0

]
then the equation (6.2) of the tangent plane becomes

[z− z0] = [ f ′(x0)][x−x0]

which makes clearer the analogy with the tangent line in Equation (6.1).

Example 6.3

For the function f (x,y) = x2y3, we have
[

fx fy
]
=
[
2xy3 3x2y2] . Thus, for example,

[ f ′(2,1) =
[
4 12

]
and the tangent plane to the graph z = f (x,y) at (2,1,4) can be written

[z−4] =
[
4 12

][x−2
y−1

]

6.1.2. Directional Derivatives Revisited

Our definitions of differentiability and of tangent plane to the graph z = f (x,y) required that all the tangent
lines to smooth curves in the surface lie in a single plane. We have not yet taken full advantage of that
information.

Let’s first consider directional derivatives. Let u = 〈u1,u2〉 be a unit vector. By taking the tangent
vector to an appropriate curve in the surface z = f (x,y), we saw in Proposition 4.11 that the vector
〈u1, u2, Du f (x0,y0)〉 is parallel to the tangent plane. Thus this vector is orthogonal to the normal vec-
tor n = 〈− fx(x0,y0),− fy(x0,y0), 1〉 of the plane, so the dot product is zero:

〈− fx(x0,y0),− fy(x0,y0), 1〉 · 〈u1, u2, Du f (x0,y0)〉= 0
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yielding
− fx(x0,y0)u1 − fy(x0,y0)u2 +Du f (x0,y0) = 0. (6.3)

Thus

Theorem 6.4
If f is differentiable at (x0,y0), then

Du f (x0,y0) = fx(x0,y0)u1 + fy(x0,y0)u2 = [ f ′(x0,y0)]

[
u1
u2

]
(6.4)

Proof. The first equality is immediate from Equation (6.3), and the second equality follows from Defini-
tion 6.2 of the derivative [ f ′(x0,y0)]. ♠
Whoa!! Strange!! Equation (6.4) enables us to compute all the directional derivatives of a differentiable
function once we know the two partial derivatives. Viewing the positive x and y axis as pointing east and
north, respectively, and z as elevation, this says that to compute the slope of the “mountain” (the graph of
f ) at (x0,y0, f (x0,y0)) in any direction 〈u1, u2〉, we only need to know the slope in two specific directions
(east and north)! That probably doesn’t jive with your experience when hiking on a mountain. If you
are climbing up Mount Washington, the slope heading east and the slope heading north from a point on
the mountain don’t determine the slope heading northeast for example. So the mountains you climb on
probably aren’t differentiable! We commented in Section 4.8 that the requirement to have a tangent plane
and thus to be differentiable was extremely demanding. This theorem is an illustration.

Example 6.5

Let f (x,y) = x2y3, (x0,y0) = (2,1), and u = 〈4
5 , 3

5〉. Then

Du f (x0,y0) =
[
4 12

]4
5

3
5

=
52
5

The reader is encouraged to compute the directional derivative directly and check that it agrees with
this result.

6.6: Interpretation of the Derivative

From Theorem 6.4, we see that the derivative [D f(x0,y0)] = [ f ′(x0,y0)] captures not only the two par-
tial derivatives but in fact tells us all the directional derivatives at (x0,y0). One way to interpret the
theorem is that the linear transformation D f(x0,y0) associated with the derivative as in Definition 6.2
satisfies

D f(x0,y0)(u) = Du f (x0,y0).

In other words, if we apply the linear transformation to a unit vector u, we get the directional
derivative in the direction u.

Even more is true. Let 〈x(t),y(t)〉 be any smooth path in the domain of f passing through (x0,y0) at
time t0 and write

r(t) = 〈x(t), y(t), f (x(t),y(t))〉
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for the corresponding path C in the graph z = f (x,y). We have

r′(t0) = 〈x′(t0), y′(t0),
d
dt |t=t0

f (x(t),y(t))〉.

The tangent line to the curve C at the point (x0,y0, f (x0,y0)) must lie in the tangent plane to the graph of f .
Thus r′(t0) is parallel to the tangent plane, so it is orthogonal to the normal vector 〈− fx(x0,y0),− fy(x0,y0), 1〉
for the tangent plane. A similar computation as we did for directional derivatives in Theorem 6.4 thus
gives:

Theorem 6.7
Suppose that f is differentiable at (x0,y0). Let 〈x(t),y(t)〉 be a smooth path in the domain of f
passing through (x0,y0) at time t0. Then

d
dt |t=t0

f (x(t),y(t)) = fx(x0,y0)x′(t0)+ fy(x0,y0)y′(t0) = [ f ′(x0,y0)]

[
x′(t0)
y′(t0)

]
(6.5)

The next example illustrates how we can apply Theorem 6.7 to problems involving “related rates” in
which various related quantities are changing over time.

Example 6.8

Suppose that you and a friend are planning to meet at the Hanover Inn on the intersection of Whee-
lock and Main Streets. You are bicycling on Wheelock and your friend is bicycling on Main St.,
both heading towards the Inn. We assume (though this isn’t really the case!) that the two streets
are perfectly straight and that they meet at a right angle so that at each given instant, your position,
your friend’s position and the Hanover Inn form the vertices of a right triangle. Suppose, at a certain
moment t0, that you are 4 miles from the intersection and bicycling 10 mph, while your friend is 3
miles from the intersection and bicycling at 8 mph. How rapidly is the distance between you and
your friend changing at that instant?

Solution. Let x denote your distance from the meeting point and y your friend’s distance. Then the
distance f (x,y) between you is the length of the hypotenuse of the right triangle with sides x and y,
namely

f (x,y) =
√

x2 + y2.

Note that x and y both depend on t. Your positions at time t0 are x0 = 4 miles and y0 = 3 miles,
and your rates of change are x′(t0) =−10 mph, and y′(t0) =−8 mph. (The derivatives x′ and y′ are
negative since you are getting closer to the meeting point.) We want to know the rate of change of
f (x(t),y(t)) at time t0. Applying Theorem 6.7, we have

d
dt |t=t0

f (x(t),y(t)) = fx(4,3)x′(t0)+ fy(4,3)y′(t0) =
4
5
(−10)+

3
5
(−8) =−64

5
mph.

♠
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6.1.3. Section Summary

• For f : R2→ R a differentiable function, the derivative of f at (x0,y0) is the matrix
[D f(x0,y0)] = [ f ′(x0,y0)] =

[
fx(x0,y0) fy(x0,y0)

]
.

• Writing [x] = [ x
y ] and [x0] = [ x0

y0 ], then the tangent plane to the graph z = f (x,y) at (x0,y0, f (x0,y0))
can be written as z− z0 = [ f ′(x0)][x− x0], in analogy with the equation of the tangent line to the
graph y = f (x) of a function of one variable.

• For differentiable functions f , we can compute the directional derivative in the direction u = 〈u1,u2〉
by

Du f (x0,y0) = [ f ′(x0,y0)]

[
u1
u2

]
• For differentiable functions, we have d

dt |t=t0
f (x(t),y(t)) = fx(x0,y0)x′(t0)+ fy(x0,y0)y′(t0). We can

use this to solve related rates problems.

6.1.4. Appendix to Section 6.1: Derivatives as limits

For functions of one variable, you learned that f is differentiable if

f ′(x0) := lim
x→x0

f (x)− f (x0)

x− x0

exists. One can rewrite this as

lim
x→x0

f (x)− f (x0)− f ′(x0)(x− x0)

x− x0
= 0. (6.6)

Writing the tangent line as
y = L(x) = f (x0)+ f ′(x0)(x− x0),

equation (6.6) can be rewritten as

lim
x→x0

f (x)−L(x)
x− x0

= 0. (6.7)

We could replace the denominator by |x− x0|; this wouldn’t affect the fact that the limit is zero. Thus this
equation is saying that the difference f (x)−L(x) is going to zero VERY quickly as x→ x0; the difference
f (x)−L(x) is much smaller in magnitude than the distance |x− x0| from x0 to x when x is small. That’s
why the tangent line is a good approximation of the function.

We took a reverse approach for functions of two variables, defining a real-valued function f (x,y) of
two variables to be differentiable at (x0,y0) if the graph z = f (x,y) has a tangent plane at (x0,y0, f (x0,y0)).
We now express this condition in terms of a limit.

Let f be a real-valued function of two variables, and assume that you’ve already determined that the
two partial derivatives fx(x0,y0) and fy(x0,y0) exist. It then makes sense to write down the equation of
the plane through (x0,y0, f (x0,y0)) containing the tangent lines to the curves in the graph in the “east-west
and north-south directions”. As before, this plane can be expressed as z = L(x,y) where

L(x,y) = f (x0,y0)+ fx(x0,y0)(x− x0)+ fy(x0,y0)(y− y0). (6.8)
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This is the only candidate for the tangent plane. However, this plane might not actually be tangent to the
graph of f ; it may not contain the tangent lines to other curves in the graph of f through (x0,y0, f (x0,y0)).
In fact, other curves might not even have tangent lines! Put another way, the plane might not really be
approximating the surface z = f (x,y) very well.

How close of an approximation is good enough for z = L(x,y) to actually be a tangent plane to the
graph z = f (x,y)? As in the case of functions of one variable, we need that the difference f (x,y)−L(x,y)
go to zero very fast as (x,y)→ (x0,y0), so fast that when we divide by the distance from (x,y) to (x0,y0),
the quotient still goes to zero, i.e.,

lim
(x,y)→(x0,y0)

f (x,y)−L(x,y)√
(x− x0)2 +(y− y0)2

= 0.

Substituting in the expression for L given in Equation (6.8), we thus have:

Theorem 6.9
Suppose that the partial derivatives fx(x0,y0) and fy(x0,y0) exist. (We are not assuming that the
partials are continuous.) Then f is differentiable at (x0,y0) if and only if

lim
(x,y)→(x0,y0)

f (x,y)− f (x0,y0)− fx(x0,y0)(x− x0)− fy(x0,y0)(y− y0)√
(x− x0)2 +(y− y0)2

= 0. (6.9)

When we learned about limits of functions of two variables, we emphasized that for the limit to exist,
you must get the same result (in this case 0) when you approach (x0,y0) along any path whatsoever. It is
precisely this fact that leads from Equation (6.9) to the condition that the plane z = L(x,y) contains the
tangent line to every path in the graph z = f (x,y) through (x0,y0, f (x0,y0)), i.e., that this plane really is
tangent to the graph.

Example 6.10

Let f (x,y) = x1/3y2/3 and let (x0,y0) = (0,0). We have f (x0,y0) = 0. We saw in Example 4.6 that
fx(0,0) = 0 and one shows similarly that fy(0,0) = 0. Thus in Equation (6.9), many of the terms in
the numerator vanish and Equation (6.9) becomes

lim
(x,y)→(0,0)

x1/3y2/3√
x2 + y2

.

The theorem tells us that f is differentiable if and only if this limit exists and equals zero. We leave
it as an exercise to check whether this is the case.
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Exercises

Exercise 6.1.1 Find [ f ′(x0,y0)] for each of the following:

(a) f (x,y) = x3 ln(y), (x0,y0) = (2,1)

(b) f (x,y) = e2x−y, (x0,y0) = (1,2)

(c) f (x,y) = xy
x2+y2 , (x0,y0) = (1,1).

Exercise 6.1.2 For each of the following, find the directional derivative in two ways: first using Theo-
rem 6.4 and then by using the original definition of directional derivative. Check that your answers agree.

(a) f (x,y) = x3 ln(y), (x0,y0) = (2,1), u = 〈−4
5 , 3

5〉.

(b) f (x,y) = e2x−y, (x0,y0) = (1,2), u = 〈4
5 ,−3

5〉.

Exercise 6.1.3 Let f (x,y) = xy
x2+y2 and (x0,y0) = (1,1). Use Theorem 6.4 to compute the directional

derivatives of f at the point (1,1) in the following directions:

(a) in the direction from (1,1) towards (3,4).

(b) in the direction of the vector 〈2,3〉.

Exercise 6.1.4 Suppose that f is differentiable at (x0,y0). Let θ be the angle between the unit vector u
and the vector v = 〈 fx(x0,y0), fy(x0,y0)〉. (Note that v is the derivative of f viewed as a vector rather than
as a row matrix.) Show that Du f (x0,y0) = |v|cos(θ).

Exercise 6.1.5 Suppose that the radius r of a cylinder is increasing at 0.5 in/sec and the height is decreas-
ing at 1 in/sec. At the instant when the radius is 5 inches and the height is 10 inches, at what rate is the
volume changing?

Exercise 6.1.6 Assume that the temperature at any point (x,y) on a metal plate is given by f (x,y) =
2x2 + 5xy− 2y2 in degrees Fahrenheit. Suppose that you run a temperature probe over the plate. If the
location of the probe at time t is given by (x(t),y(t)) = (2t2, t), how fast is the temperature reading on the
probe changing at time t0 = 1? (Assume that the probe registers temperature instantly.)

Exercise 6.1.7 In Example 4.6, we saw that the function f (x,y) = x1/3y2/3 satisfies fx(0,0) = 0. A similar
computation shows that fy(0,0) = 0. In Exercise 4.1.8, you computed Du f (0,0) for u = 〈 1√

2
, 1√

2
〉 and got

1√
2
. Why doesn’t this contradict Theorem 6.4? What can you conclude about f ? Is f differentiable at

(0,0)?

Exercise 6.1.8 For the function f (x,y) = x1/3y2/3, show that the limit in Equation 6.9 doesn’t exist. (See
Example 6.10.)

Note: if you use the path y = x for one of your test paths, you may want to compare your limit with the
directional derivative that you obtained in Exercise 4.1.8(c).
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6.2 Derivatives in Higher Dimensions

Outcomes
• Understand and be able to compute derivatives of functions whose domains and target spaces

are of any dimension 1, 2, or 3.

6.2.1. Real-valued functions of three variables

For functions f : D→ R where D is contained in R3, we can no longer visualize the graph w = f (x,y,z)
since it lies in four-dimensional space. However, the concepts of derivative, tangent approximations, and
directional derivatives are all completely analogous to that of real-valued functions of two variables.

6.11: Derivative and Tangent Approximation

• A sufficient condition for f to be differentiable at a point (x0,y0,z0) is that the three partials
fx, fy and fz all exist and are continuous at (x0,y0,z0).

• If f is differentiable at (x0,y0,z0), we define its derivative by

[ f ′(x0,y0,z0)] =
[

fx(x0,y0,z0) fy(x0,y0,z0) fz(x0,y0,z0)
]

The derivative is also denoted [D f(x0,y0,z0)].

• The tangent approximation of f is given by

w−w0 = [ f ′(x0,y0,z0)]

x− x0
y− y0
z− z0


where w0 = f (x0,y0,z0), equivalently,

w−w0 = fx(x0,y0,z0)(x− x0)+ fy(x0,y0,z0)(y− y0)+ fz(x0,y0,z0)(z− z0).

We can also write w = L(x,y,z) where

L(x,y,z) = f (x0,y0,z0)+ fx(x0,y0,z0)(x− x0)+ fy(x0,y0,z0)(y− y0)+ fz(x0,y0,z0)(z− z0).

For u = 〈u1, u2, u3〉 any unit vector in R3, the directional derivative Du f (x0,y0,z0) is defined by

Du f (x0,y0,z0) =
d
dt |t=0

f (x0 + tu2, y0 + tu2, z0 + tu3).

As in the two-dimensional case (see Theorems 6.4 and 6.7), we have:
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Theorem 6.12
Assume that f is differentiable at (x0,y0,z0). Then:

1. For any unit vector u = 〈u1, u2, u3〉, we have

Du f (x0,y0,z0) = [ f ′(x0,y0,z0)]

u1
u2
u3


2. More generally, suppose x(t), y(t), z(t) are differentiable at t0 and (x(t0),y(t0),z(t0)) =

(x0,y0,z0). Letting w(t) = f (x(t),y(t),z(t)), we have

w′(t0) = [ f ′(x0,y0,z0)]

x′(t0)
y′(t0)
z′(t0)



Example 6.13

A rectangular metal box is expanding due to a rise in temperature. At a certain instant t0, the length,
width and height of the box are 5 feet, 2 feet and 3 feet and they are increasing at the rates of
0.2, 0.1 and 0.1 feet per second, respectively. At what rate is the volume increasing at that instant?

Solution. Let x, y and z denote the length, width and height, respectively. The volume is then given by
f (x,y,z) = xyz. Since x, y and z are changing over time, they are functions x = x(t), y = y(t), and z = z(t)
of time t. Write

V (t) = f (x(t),y(t),z(t)),

which is the volume of the box at time t. By Theorem 6.12, part (2), we have

V ′(t0) = [ f ′(5,2,3)]

x′(t0)
y′(t0)
z′(t0)

 .

Now fx(x,y,z) = yz, so fx(5,2,3) = 6. Similarly fy(5,2,3) = 15 and fz(5,2,3) = 10. At that instant, we
are given that x′(t0) = 0.2 and y′(t0) = 0.1 = z′(t0). Thus

V ′(t0) =
[
6 15 10

]0.2
0.1
0.1

= 3.7 cubic feet/sec

♠
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6.2.2. Higher-dimension target space

We now consider vector-valued functions of one or more variables. We will begin with an example in
order to motivate the definition of the derivative.

Let F : R2→ R2 be the function

F(x,y) =
[

x2− y2

2xy

]
and let (x0,y0) = (1,1). Writing u = F1(x,y) = x2− y2 and v = F2(x,y) = 2xy, we have[

u
v

]
= F(x,y) =

[
F1(x,y)
F2(x,y)

]
=

[
x2− y2

2xy

]
In particular, u = x2− y2 and v = 2xy.

We leave it to the reader to compute the partial derivatives of F1 and F2 at (x0,y0) to verify that the
tangent planes to the graphs u = x2− y2 and v = 2xy are given by:

u−0 = 2(x−1)−2(y−1) =
[
2 −2

][x−1
y−1

]
and

v−2 = 2(x−1)+2(y−1) =
[
2 2

][x−1
y−1

]
Putting these two tangent approximations together, we obtain:[

u−0
v−2

]
=

[
2 −2
2 2

][
x−1
y−1

]
This is our tangent approximation to F at (1,1). The derivative [F ′(1,1)] (as we will define in Defini-
tion 6.14) is the matrix

[F ′(1,1)] =
[

2 −2
2 2

]
(6.10)

Geometric interpretation. We are working in too many dimensions to talk about tangent lines or tan-
gent planes here. So what is the tangent approximation above telling us? To try to get an idea of the
behavior of the function F , we first consider the linear transformation whose matrix is [F ′(1,1)]. This is
actually a somewhat familiar linear transformation. To see this pull out a factor of 2

√
2 from the matrix in

Equation (6.10):

[F ′(1,1)] = 2
√

2


1√
2
− 1√

2

1√
2

1√
2

= 2
√

2 [Rot π

4
].

Thus the derivative is the matrix of the linear transformation T given by rotation about the origin through
the angle π

4 followed by expansion by a factor 2
√

2. We illustrate this linear transformation in Figure 6.1.
The small disk on the left is in the domain (the xy-plane). The larger disk on the right is the image of this
disk in the target space (the uv-plane). The purple segment illustrates that T not only enlarges the disk but
also rotates it.

Figure 6.2 illustrates the tangent approximation of F at (1,1). The picture is the same as before
except it takes disks centered at the point (1,1) in the xy-plane to the larger rotated disk now centered at
F(1,1) = (0,2).
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This tangent approximation gives an idea of the behavior of the function F near the point (1,1). A very
small disk centered at (1,1) is carried by F approximately to a disk centered about the point (0,2) whose
radius is 2

√
2 times as large and which is rotated through an angle of π

4 . The area expands approximately
by the square of 2

√
2 or 8, which is the determinant of the derivative matrix.

0 0

Figure 6.1

(1,1)

(0,2)

Figure 6.2

As the example illustrates, the derivative of a differentiable function whose target space may have
higher dimension is given as follows:

Definition 6.14
Let F be a vector-valued function of one or more variables. We say that F is differentiable if each
of its component functions is differentiable. The derivative of F at a point p, denoted [F ′(p)] or
[DFp] is then the matrix whose rows are the derivatives of the component functions of F at p.
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Example 6.15: Functions of one variable

Define F : R→ R3 by

F(t) =

 et

1+2t
sin(t)

 .

Compute [F ′(0)].

Solution.
The component functions of F are F1(t) = et , F2(t) = 1+ 2t and F3(t) = sin(t). Computing their

derivatives, we get F ′1(0) = 1, F ′2(0) = 2 and F ′3(0) = 1. Thus

[F ′(0)] =

1
2
1

 .

♠

6.16: Compare

Compare this computation with the familiar way of computing tangent vectors to vector-valued
functions of one variable. Let r(t) = 〈et ,1+ 2t, sin(t)〉; this is the same as the function F but is
written in vector form. Recall that r(t) defines a curve in R3, and the tangent vector to the curve at
a point is r′(t) = 〈et , 2, cos(t)〉. In particular, the tangent vector at (1,1,0) is r′(0) = 〈1,2,1〉. This
tangent vector is precisely [F ′(0)] written in vector rather than column form.

Example 6.17

Define a function F : R2→ R3 by

F(x,y) =

 x2y
3xy

5x+4y

 .

Let (x0,y0) = (1,1). Compute [F ′(1,1)]

Solution. The component functions are F1(x,y) = x2y, F2(x,y) = 3xy, and F3(x,y) = 5x+ 4y. We have
[F ′1(x,y)] =

[
2xy x2] so

[F ′1(1,1)] =
[
2 1

]
.

Similarly
[F ′2(1,1)] =

[
3 3

]
and

[F ′3(1,1)] =
[
5 4

]
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Thus

[F ′(1,1)] =

2 1
3 3
5 4

 .

♠

6.2.3. Section summary

• For real-valued functions of 3 variables, derivatives, directional derivatives and related rates prob-
lems are all analogous to those for real-valued functions of 2 variables.

• A vector-valued function is differentiable if and only if each of its component functions is differen-
tiable. The derivative is the matrix whose rows are the derivatives of the component functions.

• Vector-valued functions of one-variable can be viewed as curves. The derivative, as defined in this
section, is the tangent vector to the curve expressed in column form.

Exercises

Exercise 6.2.1 Let f (x,y,z) = xy
z .

(a) Find [ f ′(2,1,1)].

(b) Write down the tangent approximation L(x,y,z) of f at (2,1,1) and use it to approximate f (1.9,0.8,1.1).

(c) Evaluate Du f (2,1,1) in the direction from (2,1,1) towards the origin.

Exercise 6.2.2 Let f (x,y,z) = e2x−yz.

(a) Find [ f ′(1,2,1)].

(b) Write down the tangent approximation L(x,y,z) of f at (1,2,1) and use it to approximate f (0.9,1.8,1.1).

(c) Evaluate the directional derivative of f at (1,2,1) in the direction of the vector 〈1,2,3〉.

Exercise 6.2.3 Let f (x,y,z) = y tan(x)+ y2z.

(a) Find [ f ′(0,1,5)].

(b) Write down the tangent approximation L(x,y,z) of f at (0,1,5) and use it to approximate f (0.1,1.1,4.8).

(c) Evaluate the directional derivative of f at (0,1,5) in the direction from (0,1,5) towards (2,3,6).

Exercise 6.2.4 Find the derivatives of each of the following functions at the indicated point:
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(a) F(x,y,z) =
[

e3x−y−z

x2y2

]
at (x0,y0,z0) = (1,1,2)

(b) F(x,y) =

(x+ y)3

x
sin(y)

 at (x0,y0) = (2,0).

(c) F(t) =

t2

t3

t4

 at t0 = 1.

(d) F(x, t,z) =

xycos(πz)
e2x−yz

xyz

 at (x0,y0,z0) = (1,2,1).

Exercise 6.2.5 Suppose F : R3→ R3 is differentiable at (x0,y0,z0) and that its derivative at (x0,y0,z0) is

[F ′(x0,y0,z0)] =

2 5 1
3 6 4
7 8 9


Read off the following partials from the derivative matrix:

(a) ∂F2
∂x (x0,y0,z0)

(b) ∂F3
∂y (x0,y0,z0)

(c) ∂F1
∂ z (x0,y0,z0)

Exercise 6.2.6 Let T be the linear transformation given by

T =

[
2x+ y+4z
x+7y+8z

]
Show that for every point (x0,y0,z0) in R3 we have

[T ′(x0,y0,z0)] = [T ].

Once you do the computation, it should be clear that the same relationship between T and its derivative
holds for every linear transformation T : Rn→ Rm.



150 Derivatives

6.3 Tangents to level sets

Motivation
This short section is an accompaniment to Section 14.6 in Stewart. It gives an alternative way of
understanding equation 19 on page 994 of Stewart.

Figure 6.3 shows part of the graph of the function f (x,y) = 10−x2−y2. The grey plane below it is the
xy-plane. The brown plane is the tangent plane to the graph z = f (x,y) at a point (x0,y0, f (x0,y0)), where
z0 = f (x0,y0). We can express the tangent plane as z = L(x,y), where L(x,y) is the tangent approximation
of f near (x0,y0). The light blue plane is the plane z = z0. The plane z = z0 intersects the graph in a circle,
whose projection to the xy-plane is the level curve f (x,y) = z0. The plane z = z0 and the tangent plane
intersect in a line, whose projection to the xy-plane is the level curve L(x,y) = z0. (Theses level curves
to f and to L are the circle and the line shown in the gray plane.) As the picture illustrates, the level set
L(x,y) = z0 is tangent to the level set f (x,y) = z0 at (x0,y0).

Figure 6.3

Recall that

L(x,y) = z0 + fx(x0,y0)(x− x0)+ fy(x0,y0)(y− y0).

Thus its level set L(x,y) = z0 is given by fx(x0,y0)(x− x0) + fy(x0,y0)(y− y0) = 0. Generalizing this
observation:
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Theorem 6.18

1. Let f (x,y) be a real-valued function. Assume that f is differentiable at the point (x0,y0). Let
L(x,y) be the tangent approximation to f at (x0,y0). Let z0 = f (x0,y0). Then the tangent line
to the level set f (x,y) = z0 at (x0,y0) is the level set L(x,y) = z0 and is given by

fx(x0,y0)(x− x0)+ fy(x0,y0)(y− y0) = 0. (6.11)

2. Similarly, let g be a real-valued function of three variables. Assume that g is differentiable
at the point (x0,y0,z0). Let L(x,y,z) be the tangent approximation to g at (x0,y0,z0) and let
w0 = f (x0,y0,z0). Then the tangent plane to the level surface f (x,y,z) = w0 at (x0,y0,z0) is
the level surface L(x,y,z) = w0, given by

fx(x0,y0,z0)(x− x0)+ fy(x0,y0,z0)(y− y0)+ fz(x0,y0,z0)(z− z0) = 0. (6.12)

As the following example illustrates, often one can use the theorem to find the tangent plane to a
surface S by first finding a function whose level surface is S.

Example 6.19

Let S be the surface xyz = x2 + y+8. Find the tangent plane to this surface at the point (2,4,2).

Solution. Writing the equation for the surface as xyz−x2−y= 8, we see that it is a level set of the function
f (x,y,z) = xyz− x2− y. Using Equation (6.12) with (x0,y0,z0) = (2,4,2) we obtain (after computing that
fx(2,4,2) = 4, etc.) that

4(x−2)+3(y−4)+8(z−2) = 0.

♠

6.4 The Chain Rule

Motivation
The chain rule is one of the most powerful formulas you learned in single-variable calculus. We
introduce the analogous chain rule for multi-variable functions.

Outcomes
• Be able to compute the derivative of a composition of functions F ◦G.

• From the derivative, be able to read off the various partial derivatives of the components of
F ◦G. Understand the relationship with the chain rule stated in Stewart.

Recall the chain rule for real-valued functions of one variable:
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6.20: Familiar chain rule
If g : R→ R is differentiable at x0 and f : R→ R is differentiable at y0 = g(x0), then f ◦ g is
differentiable at x0 and

( f ◦g)′(x0) = f ′(y0)g′(x0).

Using matrices, the chain rule in higher dimensions looks identical to the familiar chain rule. In the
theorem below, Rn, Rm and Rp can each be any of R, R2 or R3. (The statement is also valid in higher
dimensions but as usual, we will just work in dimensions 1, 2, and 3.)

Theorem 6.21: Chain Rule
If G : Rn→ Rm is differentiable at x0 and F : Rm→ Rp is differentiable at y0 = G(x0), then F ◦G
is differentiable at x0 and

[(F ◦G)′(x0)] = [F ′(y0)][G′(x0)].

(Aside: If we view the derivative of a function F as a linear transformation, the chain rule says the
derivative of the composition F ◦G is the composition of their derivatives.)

Intuition. Writing [z0] = F(y0), the tangent approximations say that

[y−y0]∼ [G′(x0)][x−x0]

and
[z− z0]∼ [F ′(y0)][y−y0].

Substituting the approximation for y−y0 in the first equation into the second one above, we get

[z− z0]∼ [F ′(y0)][G′(x0)][x−x0]. (6.13)

On the other hand, the tangent approximation for F ◦G near x0 is given by

[z− z0]∼ [(F ◦G)′(x0)][x−x0]. (6.14)

A comparison of the approximations (6.13) and (6.14) suggests the chain rule

[(F ◦G)′(x0)] = [F ′(y0)][G′(x0)]

(The actual proof of the chain rule, which we omit, involves limits.)

Example 6.22

Let f (x,y) = x2y3 and r(t) = 〈et ,1+ t〉, or in column form (which is recommended before taking

the derivative), r(t) =
[

et

1+ t

]
. Let’s compute [( f ◦ r)′(0)]. We have r(0) = (1,2), so the chain rule

tells us that

[( f ◦ r)′(0)] = [ f ′(1,2)][r′(0)] =
[
16 12

][1
1

]
= [28].

Since the composition f ◦ r is a real-valued function of just one variable, you might want to leave
out the brackets around the 28.
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The composition in Example 6.22 can be written as f ◦ r(t) = f (x(t)),y(t)), where x(t) = et and
y(t) = 1+ t. You might recall that we’ve computed d

dt f (x(t)),y(t)) before without using the chain rule:

6.23: Compare

Compare the case of the chain rule illustrated in Example 6.22 with Theorem 6.7. Both results say
the same thing: if x(t) and y(t) are differentiable at t0 and (x(t0),y(t0)) = (x0,y0), then

d
dt |t=t0

f (x(t),y(t)) = [ f ′(x0,y0)]

[
x′(t0)
y′(t0)

]
In Theorem 6.7, we obtained this result only using the fact that the tangent plane to the graph of f
contains the tangent line to all smooth curves in the graph z = f (x,y).

Example 6.24

Define G : R2→ R3 and f : R3→ R by

G(s, t) =

 s2t
s+2t2

st

 and f (x,y,z) = e2x−y+z.

Compute the derivative of f ◦G at (s0, t0) = (1,1).

Solution. Note that g(1,1) = (1,3,1). The chain rule says that

[( f ◦G)′(1,1)] = [ f ′(1,3,1)][G′(1,1)].

We compute:

[G′(s, t)] =

2st s2

1 4t
t s

 so [G′(1,1)] =

2 1
1 4
1 1


Similarly check that

[ f ′(1,3,1)] =
[
2 −1 1

]
Thus

[( f ◦G)′(1,1)] =
[
2 −1 1

]2 1
1 4
1 1

=
[
4 −1

]
♠
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6.25: Compare

We use Example 6.24 to compare Theorem 6.21 with the version of the chain rule in Stewart.
Writing w = f ◦G(s, t), we can read off from the derivative matrix computed in the example that at
(s0, t0) = (1,1),

∂w
∂ s

= 4 and
∂w
∂ t

=−1.

Writing w = f (x,y,z) and (x,y,z) = G(s, t), the chain rule in Stewart says that

∂w
∂ s

=
∂w
∂x

∂x
∂ s

+
∂w
∂y

∂y
∂ s

+
∂w
∂ z

∂ z
∂ s

.

At (s, t) = (1,1) and (x,y,z) = (1,3,1), we get

∂w
∂ s

= 2(2)+(−1)(1)+(1)(1) = 4. (6.15)

This agrees with what we obtained using the matrices. Notice that the computation in Equation 6.15
is equivalent to multiplying the first (and only) row of the matrix [ f ′(1,3,1)] by the first column of
the matrix [G′(1,1)]. Similarly, the formula in Stewart for ∂w

∂ t corresponds to multiplying the row
of f ′(1,3,1) by the second column of [G′(1,1)]. The matrix multiplication gives us both partials at
once. (If you are only interested in one of the partials, then the formula in Stewart is a bit faster. If
you want all the partials, the matrix method is more convenient.)
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Example 6.26

Let G be the function in Example 6.24 and define F : R3→ R2 by

F(x,y,z) =
[

e2x−y+z

xyz

]
We can compute (check!)

[F ′(1,3,1)] =
[

2 −1 1
3 1 3

]
so

[(F ◦G)′(1,1)] =
[

2 −1 1
3 1 3

]2 1
1 4
1 1

=

[
4 −1

10 10

]
(6.16)

To compare with the chain rule in Stewart, let u = e2x−y+z and v = xyz (so u and v are the two
components functions of F , and write x = s2t, y = s+ 2t2, z = st (these are the three component
functions of G.) We then have

[
u
v

]
= F(x,y,z) and

x
y
z

= G(s, t)

. The composition allows us to view u and v as functions of s and t. From Equation (6.16), we can
read off the partials of u and v with respect to s and t at (s0, t0) = (1,1). The rows of the matrix
correspond to u and v, the two component functions and the columns correspond to the two variables
s and t. We thus read off

∂u
∂ s

= 4,
∂u
∂ t

=−1,
∂v
∂ s

= 10,
∂v
∂ t

= 10.

6.4.1. Section summary

• [(F ◦G)′(x0)] = [F ′(y0)][G′(x0)] where y0 =G(x0). Except for the fact that these are matrices rather
than real numbers, this is identical to the single-variable chain rule.

• If you just want to compute a single partial derivative, it is easier to use the version of the chain
rule in Stewart. If you want all the partials, it’s faster to use the matrix version and then read off the
various partials from the matrix entries.
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Exercises

Exercise 6.4.1 For each of the following, compute the derivative [(F ◦G)′] at the indicated point.

(a) F(x,y) =
[

exy2

(x+1)y3

]
, G(t) =

[
sin(t)

et

]
, t0 = 0.

(b) F(x,y,z) =

 xy/z
y tan(z−1)

x2yz

, G(s, t) =

 s2t
2se t−2

t−2s+1

, (s0, t0) = (1,2).

(c) F(x,y) = exy2, G(x,y,z) =
[

3x+2y+5z
2
√

x+ y+ z

]
, (x0,y0,z0) = (1,1,−1).

(Note: it doesn’t matter that we used the same names for some of the variables. You can always
rename the variables for F if you want to.)

Exercise 6.4.2 This exercise refers to problem 22 in Stewart Section 14.5.

(a) Express the given functions as T = F(u,v) and [u
v ] = G(p,q,r).

(b) Write down the derivative matrices for F and G at the indicated point. (Here the indicated point is
(p,q,r) = (2,1,4) and (u,v) = G(2,1,4). You first need to compute G(2,1,4).)

(c) Use the matrix version of the Chain Rule to compute the derivative [(F ◦G)′(2,1,4)].

(d) Read off from your matrix in part (c) the partial derivatives that are requested in problem 22.

(e) Find ∂T
∂ p using a tree diagram as in Stewart and check that your answer agrees with the value

obtained in part (d).

Exercise 6.4.3 This exercise refers to problem 23 in Stewart Section 14.5.

(a) Follow the procedure outlined in steps (a)-(d) of Exercise 6.4.2 to express w as the composition of
two functions F and G, to find the derivative of this composition at the indicated point, and to read
off the partial derivatives ∂w

∂ r and ∂w
∂θ

.

(b) Use a tree diagram as in Stewart to compute ∂w
∂ r and compare your answer with that in part (a).

Exercise 6.4.4 This exercise refers to problem 24 in Stewart Section 14.5.

(a) Follow the procedure outlined in steps (a)-(d) of Exercise 6.4.2 to express P as the composition of
two functions F and G, to find the derivative of this composition at the indicated point, and to read
off the partial derivatives ∂P

∂x and ∂P
∂y .

(b) Use a tree diagram as in Stewart to compute ∂P
∂y and compare your answer with that in part (a).
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Exercise 6.4.5 This and the next exercise illustrate that the product rule that you learned for differentiating
functions such as f (x) = x2 sin(x) is actually a special case of the chain rule. Express z = x2 sin(x) as

z = uv, where u = x2 and v = sin(x). (6.17)

. Now apply the chain rule (either version you wish) to Equation (6.17) to compute dz
dx .

Exercise 6.4.6 This exercise is a continuation of Exercise 6.4.5. Now let u(x) and v(x) be any differen-
tiable real-valued functions. (Exercise 6.4.5 was the special case u(x) = x2 and v(x) = sin(x).) Write
z = uv and use the chain rule to show that

dz
dx

= u′(x)v(x)+u(x)v′(x).

Thus the product rule follows from the chain rule.





7. Answers to Selected Exercises

Chapter 1. Systems of Equations

Systems Of Equations, Algebraic Procedures

1.2.1(a) row-echelon form , not reduced row-echelon form 1.2.2(a) inconsistent, (b) x= 5−2t, y= t, z= 4
where t is any real number 1.2.13 (f) x = −1, y = 2, z = −1; (g) x = 1− 2t, y = t, z = 1 where t is any
real number

Chapter 2. Vectors: a Linear Viewpoint

Linear Combinations and Spans

2.1.3 (a) u = 2v−w. (d) u = 3v+w. (e) not a linear combination
2.1.4 (a) no. (b) yes.
2.1.6 (a) y = 6

5x.

Using a basis to provide a map of a subspace

2.2.1 (a) linearly dependent. (d) linearly dependent.
2.2.2 (a) {〈3,1〉}. (d) {〈3,1,1〉,〈1,2,1〉}.
2.2.3 (a) (1

2 ,−1
2).

Vector Equations of Lines and Planes

2.3.1 (a) 〈1,5,6〉+ t〈4,7,8〉. (c) 〈1,4,5〉+ t〈1,−3,1〉.
2.3.2 (a) x = 1+4t,y = 5+7t,z = 6+8t. (c) x = 1+ t,y = 4−3t,z = 5+ t.
2.3.3 (a) y = 8

3x.
2.3.4 (a) 〈4,−1〉+ t〈4,−3〉.

159
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Chapter 3. Introduction to Matrices and Matrix Operations

Matrix Operations

3.2.7.

a.
[
−3 −6 −9
−6 −3 −21

]

b.
[

8 −5 3
−11 5 −4

]
c. Not possible

d.
[
−3 3 4

6 −1 7

]
e. Not possible

f. Not possible

Chapter 4. Directional Derivatives and Differentiability

Directional Derivatives of Real-valued Functions

4.1.1 (a) 12
5 . (d) 5

2
√

2
.

4.1.2 (b) 15
√

13.
4.1.3 (a) 〈−4

5 , 3
5 , 12

5 〉

Chapter 5. Linear Transformations

Linear Transformations and Their Representing Matrices

5.2.1 (a) no. (b) yes
5.2.2 (b)

[
1 −1

]
5.2.7

[
1 4
2 1
3 4

]
5.2.13: (a) R2, rank 2. (b) line, rank 1. (c) R2, rank 2.
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Example: Rotations and Reflections of R2

5.4.2 (b). (−
√

2,2
√

2), (−9
√

2
2 ,−

√
2

2 ). (d). (1−3
√

3
2 , −3−

√
3

2 ), −5−4
√

3
2 , −4+5

√
3

2 )

Composition of LInear Transformations

5.6.1 (a) Yes. (b) No.

5.6.2 (a) Representing matrix
[ −5 −1
−4 −2
−15 −5

]

Chapter 6. Derivatives

Directional Derivatives of Real-valued Functions

6.1.1(a) [0,8].

Derivatives in Higher Dimensions

6.2.1 (a) [1,2,−2]. (b) L(x,y,z) = 2+1(x−2)+2(y−1)−2(z−1); 1.3. (c)−
√

6
3

6.2.4(a)
[

3 −1 −1
2 2 0

]
Chain Rule

6.4.1(a)
[

3
4

]
6.4.2(a) w = F(x,y,z) = xy+ yz+ xz;

[ x
y
z

]
= G(r,θ) =

[
r cos(θ)
r sin(θ)

rθ

]
;

[F ′(0,2,π)] =
[
2+π π 2

]
, [G′(2, π

2 )] =

[
0 −2
1 0

π/2 2

]
[(F ◦G)′(0,2,π)] = [2π −2π ]

∂w
∂ r = 2π , ∂w

∂θ
=−2π .
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