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Natural systems from snowflakes to mollusc shells show a great diversity of complex patterns. The 
origins of such complexity can be investigated through mathematical models termed' cellular automata'. 
Cellular automata consist of many identical components, each simple, but together capable of complex 
behaviour. They are analysed both as discrete dynamical systems, and as information-processing 
systems. Here some of their universal features are discussed, and some general principles are suggested. 

IT is common in nature to find systems whose overall behaviour 
is extremely complex, yet whose fundamental component parts 
are each very simple. The complexity is generated by the cooper
ative effect of many simple identical components. Much has 
been discovered about the nature of the components in physical 
and biological systems; little is known about the mechanisms 
by which these components act together to give the overall 
complexity observed. What is now needed is a general math
ematical theory to describe the nature and generation of com
plexity. 

Cellular automata are examples of mathematical systems con
structed from many identical components, each simple, but 
together capable of complex behaviour. From their analysis, 
on~ may, on the one hand, develop specific models for particular 
systems, and, on the other hand, hope to abstract general 
principles applicable to a wide variety of complex systems. 
Some recent results on cellular automata will now be out
lined; more extensive accounts and references may be found in 
refs 1-4. 

Cellular automata 
A one-dimensional cellular automaton consists of a line of sites, 
with each site carrying a value ° or 1 (or in general 0, ... , k - I). 
The value ai of the site at each position i is updated in discrete 
time steps according to an identical deterministic rule depending 
on a neighbourhood of sites around it: 

(I) 

Even with k = 2 and r = 1 or 2, the overall behaviour of cellular 
automata constructed in this simple way can be extremely 
complex. 

Consider first the patterns generated by cellular automata 
evolving from simple 'seeds' consisting of a few non-zero sites. 
Some local rules cf> give rise to simple behaviour; others produce 
complicated patterns. An extensive empirical study suggests that 
the patterns take on four qualitative forms, illustrated in Fig. I : 

... 

(I) disappears with time; 
(2) evolves to a fixed finite size; 
(3) grows indefinitely at a fixed speed; 
(4) grows l ind contracts .irregularly. 

Patterns of type 3 are often found to be self-similar or scale 
invariant. Parts of such patterns, when magnified, are indistin
guishable from the whole. The patterns are characterized by a 
fractal dimension5 ; the value log2 3 = 1.59 is the most common. 
Many of the self-similar patterns seen in natural systems may, 
in fact, be generated by cellular automaton evolution. 

Figure 3 shows the evolution of cellular automata from initial 
states where each site is assigned each of its k possible values 
with an independent equal probability. Self-organization is seen: 
ordered structure is generated from these disordered initial 
states, and in some cases considerable complexity is evident. 

Different initial states with a particular cellular automaton 
rule yield patterns that differ in detail, but are similar in form 
and statistical properties. Different cellular automaton rules 
yield very different patterns. An empirical study, nevertheless, 
suggests .that four qualitative classes may be identified, yielding 
four characteristic limiting forms: 

(I) spatially homogeneous state; 
(2) sequence of simple stable or periodic structures; 
(3) chaotic aperiodic behaviour; 
(4) complicated localized structures, some propagating. 
All cellular automata within each class, regardless of the 

details of their construction and evolution rules, exhibit qualita
tively similar behaviour. Such universality should make general 
results on these classes applicable to a wide variety of systems 
l!l0d~lle<!.!,x cellular a~omata. 

Applications 
Current mathematical models of natural systems are usually 
based on differential equations which describe the smooth vari
ation of one parameter as a function of a few others. Cellular 
automata provide alternative and in some respects complemen-

Fig. 1 Classes of patterns generated by the evolution of cellular automata from simple 'seeds'. Successive rows correspond to successive 
time steps in the cellular automaton evolution. Each site is updated at each time step according to equation (I) by cellular automaton rules 
that depend on the values of a neighbourhood of sites at the previous time step. Sites with values 0 and I are represented by white and black 
squares, respectively. Despite the simplicity of their construction, patterns of some complexity are seen to be generated. The rules shown 
exemplify the four classes of behaviour found. (The first three are k = 2, r = I rules with rule numbers' 128,4 and 126, respectively; the fourth 

is a k = 2, r = 2 rule with totalistic code2 52.) In the third case, a self similar pattern is formed. 
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Fig. 2 Evolution of small initial perturbations in cellular automata, as shown by the difference (modulo two) between patterns generated 
from two disordered initial states differing in the value of a single site. The examples shown illustrate the four classes of behaviour found. 
Information on changes in the initial state almost always propagates only a finite distance in the first two classes, but may propagate an 

arbitrary distance in the third and fourth classes. 

tary models, describing the discrete evolution of many (iden
tical) components. Models based on cellular automata are typi
cally most appropriate in highly nonlinear regimes of physical 
systems, and in chemical and biological systems where discrete 
thresholds occur. Cellular automata are particularly suitable as 
models when growth inhibition effects are important. 

As one example, cellular automata provide global models for 
the growth of dendritic crystals (such as snowflakes)6. Starting 
from a simple seed, sites with values representing the solid phase 
are aggregated according to a two-dimensional rule that 
accounts for the inhibition of growth near newly-aggregated 
sites, resulting in a fractal pattern of growth. Nonlinear chemical 
reaction-diffusion systems give another example7•8 : a simple 
cellular automaton rule with growth inhibition captures the 
essential features of the usual partial differential equations, and 
reproduces the spatial patterns seen. Turbulent fluids may also 
potentially be modelled as cellular automata with local interac
tions between discrete vortices on lattice sites. 

If probabilistic noise is added to the time evolution rule (1), 
then cellular automata may be identified as generalized Ising 
models9•IO• Phase transitions may occur if cf> retains some deter
ministic components, or in more than one dimension. 

Cellular automata may serve as suitable models for a wide 
variety of biological systems. In particular, they may suggest 
mechanisms for biological pattern formation. For example, the 
patterns of pigmentation found on many mollusc shells bear a 
striking resemblance to patterns generated by class 2 and 3 
cellular automata (see refs 11,12), and cellular automaton 
models for the growth of some pigmentation patterns have been 
constructed I3. 

Mathematical approaches 
Rather than describing specific applications of cellular 
automata, this article concentrates on general mathematical 
features of their behaviour. Two complementary approaches 
provide characterizations of the four classes of behaviour seen 
in Fig. 3 . 

In the first approach2, cellular automata are viewed as discrete 
dynamical systems (see ref. 14), or discrete idealizations of 
partial differential equations. The set of possible (infinite) con
figurations of a cellular automaton forms a Cantor set; cellular 
automaton evolution may be viewed as a continuous mapping 
on this Cantor set. Quantities such as entropies, dimensions and 
Lyapunov exponents may then be considered for cellular 
automata. 

In the second approach3, cellular automata are instead con
sidered as information-processing systems (see ref. 15), or 
parallel-processing computers of simple construction. Informa
tion represented by the initial configuration is processed by the 
evolution of the cellular automaton. The results of this informa
tion processing may then be characterized in terms of the types 
of formal languages generated. (Note that the mechanisms for 
information processing in natural system appear to be much 
closer to those in cellular automata than in conventional serial
processing computers: cellular automata may, therefore, provide 
efficient media for practical simulations of many natural 
systems. ) 

Entropies and dimensions 
Most cellular automaton rules have the important feature of 
irreversibility: several different configurations may evolve to a 
single configuration, and, with time, a contracting subset of all 
possible configurations appears. Starting from all possible initial 
configurations, the cellular automaton evolution may generate 
only special 'organized' configurations, and 'self-organization' 
may occur. 

For class 1 cellular automata, essentially all initial configur
ations evolve to a single final configuration, analogous to a limit 
point in a continuous dynamical system. Class 2 cellular 
automata evolve to limit sets containing essentially only periodic 
configurations, analogous to limit cycles. Class 3 cellular 
automata yield chaotic aperiodic limit sets, containing analogues 
of chaotic or 'strange' attractors. 

Entropies and dimensions give a generalized measure of the 
density of the configurations generated by cellular automaton 
evolution. The (set) dimension or limiting (topological) entropy 
for a set of cellular automaton configurations is defined as 
(compare ref. 14) 

. I 
d (x) = lim -Iogk N(X) 

x~oo X 
(2) 

where N(X) gives the number of distinct sequences of X site 
values that appear. For the set of possible initial configurations, 
d (x) = 1. For a limit set containing only a finite total number of 
configurations, d (x) = O. For most class 3 cellular automata, d (x) 

decreases with time, giving, 0 < d (x) < 1, and suggesting that a 
fractal subset of all possible configurations occurs. 

A dimension or limiting entropy d (t) corresponding to the 
time series of values of a single site may be defined in analogy 
with equation (2). (The analogue of equation (2) for a sufficiently 
wide patch of sites yields a topologically-invariant entropy for 
the cellular automaton mapping.) d ( t ) = 0 for periodic sets of 
confi~urations. 

d (x and d ( t ) may be modified to account for the probabilities 
of configurations by defining 

I k' 
d <,:) = -lim - L Pj 10gkPj (3) 

x~oo X j- l 

and its analogue, where Pj are probabilities for possible length 
X sequences. These measure dimensions may be used to 
delineate the large time behaviour of the different classes of 
cellular automata: 

(1) d~) = d~) = 0 
(2) d~» O, d ~) =O 
(3) d <;» O, d~» O 

As discussed below, dimensions are usually undefined for class 
4 cellular automata. 

Information propagation 
Cellular automata may also be characterized by the stability or 
predictability of their behaviour under small perturbations in 
initial configurations. Figure 2 shows differences in patterns 
$enerated by cellular automata resulting from a change in a 
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Fig. 3 Evolution of various cellular automata from disordered initial states. In many cases, ordered structure is seen to be generated. The 
first row of pictures show examples of the four qualitative classes of behaviour found. (The rules shown are the same as in Fig. I.) The lower 
two rows show examples of cellular automata with k = 5 (five possible values for each site) and r = I (nearest neighbour rules). Site values 0 
to 4 are represented by white, red, green, blue and yellow squares, respectively. (The rules shown have totalistic codes 10175,566780,570090, 

580020, 583330, 672900, 5694390, 59123000.) The 'orange' discoloration is a background, not part of the pattern. 

Fig. 4 Evolution of multiple phases in cellular automata. Pairs 
of sites are shown combined: 00 is represented by white, 01 by 
red , 10 by green and I I by blue. Alternate time steps are shown. 
Both rules simulate an additive rule (number 90) under a blocking 
transformation. In the first rule (number 18), the simulation is 
attractive : starting from a disordered initial state, the domains 
grow with time. In the second rule (number 94), the simulation is 
repUlsive: only evolution from a special initial state yields additive 
rule behaviour; a defect is seen to grow, and attractive simulation 

of the identity rule takes over. 

Fig. 5 Examples of the evolution of a typical class 4 cellular 
automaton from disordered initial states. This and other class 4 
cellular automata are conjectured to be capable of arbitrary infor
mation processing, or universal computation. The rule shown has 
k = 3, r = I, and takes the value of a site to be I if the sum of the 
values of the sites in its three-site neighbourhood is 2 or 6, to be 2 

if the sum is 3, and to zero otherwise (totalistic code 792). 

Fig. 6 Persistent structures generated in the evolution of the class 
4 cellular automaton of Fig. 5. The first four structures shown 
have periods 1,20, 16 and 12 respectively ; the last four structures 
(and their reflections) propagate: the first has period 32, the next 
three period 3, and the last period 6. These structures are some of 

the elements required to support universal computation. 
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Fig. 7 Evolution of some cellular automata with reverisble rules. Each configuration is a unique function of the two previous configurations. 
(Rule numbers 4, 22, 90 and 126 are shown.) As initial conditions, each site in two successive configurations is chosen to have value I with 

probability 0.1 . 

single initial site value. Such perturbations have characteristic 
effects on the four classes of cellular automata: 

(I) no change in final state; 
(2) changes only in a finite region; 
(3) changes over an ever-increasing region; 
(4) irregular changes. 
In class I and. 2 cellular automata, information associated 

with site values in the initial state propagates only a finite 
distance; in class 3 cellular automata, it propagates an infinite 
distance at a fixed speed, while in class 4 cellular automata, it 
propagates irregularly, but over an infinite range. The speed of 
information propagation is related to the Lyapunov exponent 
for the cellular automaton evolution, and measures the degree 
of sensitivity to initial conditions (see ref. 16). It leads to different 
degrees of predictability for the outcome of cellular automaton 
evolution: 

(I) entirely predictable, independent of initial state; 
(2) local behaviour predictable from local initial state; 
(3) behaviour depends on an ever-increasing initial region; 
(4) behaviour effectively unpredictable. 
Information propagation is particularly simple for the special 

class of additive cellular automata (whose local rule function 
cP is linear modulo k), in which patterns generated from arbitrary 
initial states may be obtained by superposition of patterns gener
ated by evolution of simple initial states containing a single 
non-zero site. A rather complete algebraic analysis of such 
cellular automata may be given 17 • Most cellular automata are 
not additive; however, with special initial configurations it is 
often possible for them to behave just like additive rules. Thus, 
for example, the evolution of an initial configuration consisting 
of a sequence of 00 and 0 I digrams under one rule may be 
identical to the evolution of the corresponding 'blocked' con
figuration consisting of 0 and I under another rule. In this way, 
one rule may simulate another under a blocking transformation 
(analogous to a renormalization group transformation). Evo
lution from an arbitrary initial state may be attracted to (or 
repelled from) the special set of configurations for which such 
a simulation occurs. Often several phases exist, corresponding 
to different blocking transformations: sometimes phase boun
daries move at constant speed, and one phase rapidly takes 
over; in other cases, phase boundaries execute random walks, 
annihilating in pairs, and leading to a slow increase in the 
average domain size, as illustrated in Fig. 4. Many rules appear 
to follow attractive simulation paths to additive rules, which 
correspond to fixed points of blocking transformations, and thus 
exhibit self similarity. The behaviour of many rules at large 
times, and on large spatial scales, is therefore determined by 
the behaviour of additive rules. 

Thermodynamic~ 

Decreases with time in the spatial entropies and dimensions of 
equations (2) and (3) signal irreversibility in cellular automaton 
evolution. Some cellular automaton rules are, however, revers
ible, so that each and every configuration has a unique pre
decessor in the evolution, and the spatial entropy and dimension 
of equations (2) and (3) remain constant with time. Figure 7 
shows some examples of the evolution of such rules, constructed 
by adding a term _aIr - I) to equation (I) (ref. 20 and E. Fredkin, 
personal communication). Again, there are analogues of the 

four classes of behaviour seen in Fig. 3, distinguished by the 
range and speed of information propagation. 

Conventional thermodynamics gives a general description of 
systems whose microscopic evolution is reversible; it may, there
fore, be applied to reversible cellular automata such as those 
of Fig. 4. As usual, the 'fine-grained' entropy for sets (ensembles) 
of configurations, computed as in equation (3) with perfect 
knowledge of each site value, remains constant in time. The 
'coarse-grained' entropy for configurations is, nevertheless, 
almost always non-decreasing with time, as required by the 
second law of thermodynamics. Coarse graining emulates the 
imprecision of practical measurements, and may be imple
mented by applying almost any contractive mapping to the 
configurations (a few iterations of an irreversible cellular 
automaton rule suffice). For example, coarse-grained entropy 
might be computed by applying equation (3) to every fifth site 
value. In an ensemble with low coarse-grained entropy, the 
values of every fifth site would be highly constrained, but 
arbitrary values for the intervening sites would be allowed. Then 
in the evolution of a class 3 or 4 cellular automaton the disorder 
of the intervening site values would 'mix' with the fifth-site 
values, and the coarse-grained entropy would tend towards its 
maximum value. Signs of self-organization in such systems must 
be sought in temporal correlations, often manifest in 'fluctu
ations' or metastable 'pockets' of order. 

While all fundamental physical laws appear to be reversible, 
macroscopic systems often behave irreversibly, and are 
appropriately described by irreversible laws. Thus, for example, 
although the microscopic molecular dynamics of fluids is revers
ible, the relevant macroscopic velocity field obeys the irreversible 
Navier-Stokes equations. Conventional thermodynamics does 
not apply to such intrinsically irreversible systems: new general 
principles must be found. Thus, for cellular automata with 
irreversible evolution rules, coarse-grained entropy typically 
increases for a short time, but then decreases to follow the 
fine-grained entropy. Measures of the structure generated by 
self-organization in the large time limit are usually affected very 
little by coarse graining. 

Formal language theory 
Quantities such as entropy and dimension, suggested by infor
mation theory, give only rough characterizations of cellular 
automaton behaviour. Computation theory suggests more com
plete descriptions of self-organization in cellular automata (and 
other systems). Sets of cellular automaton configurations may 
be viewed as formal languages, consisting of sequences of sym
bols (site values) forming words according to definite gram
matical rules. 

The set of all possible initial configurations corresponds to a 
trivial formal language. The set of configurations obtained after 
any finite number of time steps are found to form a regular 
language3• The words in a regular language correspond to the 
possible paths through a finite graph representing a finite state 
machine. It can be shown that a unique smallest finite graph 
reproduces any given regular language (see ref. 15). Examples 
of such graphs are shown in Fig. 8. These graphs give complete 
specifications for sets of cellular automaton configurations 
(ignoring probabilities). The number of nodes E in the smallest 
$r~ph correspo.nding to a particular set of configurations may 
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Fig. 8 Graphs representing the sets of configurations generated in the first few time steps of evolution according to a typical class 3 cellular 
automaton rule (k = 2, r = I, rule number 126). Possible configurations correspond to possible paths through the graphs, beginning at the 
encircled node. At t = 0, all possible configurations are allowed. With time, a contracting subset of configurations are generated. (After one 
time step, for example, no configuration containing the sequence of site value lOl can appear.) At each time step, the complete set of possible 
configurations forms a regular formal language: the graph gives a minimal complete specification of it. The number of nodes in the graph 
gives a measure of the complexity E of the set, viewed as a regular language. As for other class 3 cellular automata, the complexity of the 

sets grows rapidly with time; for t = 3, E = 107, and t = 4, E = 2,867. 

be defined as the 'regular language complexity' of the set. It 
specifies the size of the minimal description of the set in terms 
of regular languages. Larger E correspond to more complicated 
sets. (Note that the topological entropy of a set is given by the 
logarithm of the algebraic integer obtained as the largest root 
of the characteristic polynomial for the incidence matrix of the 
corresponding graph. The characteristic polynomials for the_ 
graphs in Fig. 7 are 2-A (Amax=2), I-A+2A 2-A 3 (Amax "" 
1.755) and -I +A -A2+2A3_4A4+A5+3A 6_5A 7 +3A 8 -3A 9 + 
5A 10 - 6A 11 +4A 12 - A 13 (Amax"" 1.732), respectively.) 

The regular language complexity E for sets generated by 
cellular automaton evolution almost always seems to be non
decreasing with time. Increasing E signals increasing self
organization. E may thus represent a fundamental property of 
self-organizing systems, complementary to entropy. It may, in 
principle, be extracted from experimental data. 

Cellular automata that exhibit only class I and 2 behaviour 
always appear to yields sets that correspond to regular languages 
in the large time limit. Class 3 and 4 behaviour typically gives 
rise, however, to a rapid increase of E with time, presumably 
leading to limiting sets not described by regular languages. 

Formal languages are recognized or generated by idealized 
computers with a 'central processing unit' containing a fixed 
finite number of internal states, together with a 'memory'. Four 
types of formal languages are conventionally identified, corre
si'0nding to four types of computer: 

• Regular languages: no memory required. 
• Context-free languages: memory arranged as a last-in, first

out stack. 
• Context-sensitive languages: memory as large as input word 

required. 
• Unrestricted languages: arbitrarily large memory required 
__ (general Turing machine) . 

Examples are known of cellular automata whose limiting sets 
correspond to all four types of language (L. Hurd, in prepar
ation). Arguments can be given that the limit sets for class 3 
cellular automata typically form context-sensitive languages, 
while those for class 4 cellular automata correspond to unrestric
ted languages. (Note that while a minimal specification for any 
regular language may always be found, there is no finite pro
cedure to obtain a minimal form for more complicated formal 
languages: no generalization of the regular language complexity 
E may thus be given.) 

Computation theory 
While dynamical systems theory concepts suffice to define class 
I, 2 and 3 cellular automata, computation theory is apparently 
required for class 4 cellular automata. Examples of the evolution 
of a typical class 4 cellular automaton are shown in Fig. 5. 
Varied and complicated behaviour, involving many different 
time scales is evident. Persistent structures are often generated; 
the smallest few are illustrated in Fig. 6, and are seen to allow 
both storage and transmission of information. It seems that the 
structures supported by this and other class 4 cellular automata 
rule may be combined to implement arbitrary information pro
cessing operations. Class 4 cellular automata would then be 
capable of universal computation: with particular initial states, 
their evolution could implement any finite algorithm. (Universal 
computation has been proved for a k= 18, r= I rule22, and for 
two-dimensional cellular automata such as the 'Game of 
Life' 22,23.) A few per cent of cellular automaton rules with k > 2 
or r > I are found to exhibit class 4 behaviour: all these would 
then, in fact, be capable of arbitrarily complicated behaviour. 
This capability precludes a smooth infinite size limit for entropy 
or other quantities: as the size of cellular automaton considered 
increases, more and more complicated phenomena may appear. 

Cellular automaton evolution may be viewed as a computa
tion. Effective preidiction of the outcome of cellular automaton 
evolution requires a short-cut that allows a more efficient compu
tation than the evolution itself. For class I and 2 cellular 
automata, such short cuts are clearly possible: simple computa
tions suffice to predict their complete future. The computational 
capabilities of class 3 and 4 cellular automata may, however, 
be sufficiently great that, in general, they allow no short-cuts. 
The only effective way to determine their evolution from a given 

. initial state would then be by explicit observation or simulation: 
no finite formulae for their general behaviour could be given. 
(If class 4 cellular automata are indeed capable of universal 
computation, then the variety of their possible behaviour would 
preclude general prediction, and make explicit observation or 
simulation necessary.) Their infinite time limiting behaviour 
could then not, in general, be determined by any finite computa
tional process, and many of their limiting properties would be 
formally undecidable. Thus, for example, the 'halting problem' 
of determining whether a class 4 cellular automaton with a given 
finite initial configuration ever evolves to the null configuration 
~ould be undecidable. An explicit simulation could determine 
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only whether halting occurred before some fixed time, and not 
whether it occurred after an arbitrarily long time. 

For class 4 cellular automata, the outcome of evolution from 
almost all initial configurations can probably be determined 
only by explicit simulation, while for class 3 cellular automata 
this is the case for only a small fraction of initial states. Neverthe
less, this possibility suggests that the occurrence of particular 
site value sequences in the infinite time limit is in general 
undecidable. The large time limit of the entropy for class 3 and 
4 cellular automata would then, in general, be non-computable: 
bounds on it could be given, but there could be no finite 
procedure to compute it to arbitrary precision. (This would be 
the case if the limit sets for class 3 and 4 cellular automata 
formed at least context-sensitive languages.) 

While the occurrence of a particular length n site value 
sequence in the infinite time limit may be undecidable, its 
occurrence after any finite time t can, in principle, be determined 
by considering all length no = n + 2rt initial sequences that could 
ev~lye to it. For increasing n or t this procedure would, neverth<:-
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Undecidiibifity-and intractability are common in problems of 
mathematics and computation. They may well afflict all but the 
simplest cellular automata. One may speculate that they are 
widespread in natural systems, perhaps occurring almost 
whenever nonlinearity is present. No simple formulae for the 
behaviour of many natural systems could then be given; the 
consequences of their evolution could be found effectively only 
by direct simulation or observation. 
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