




Long answer questions

For each long answer problem, you must give a full explanation and justification of your
answer to receive credit. A list of computations is not sufficient to gain credit!

11. (15 points) Four feet of wire is to be used to form a square and a circle. How much of
the wire should be used for the square and how much should be used for the circle to
enclose the maximum total area (i.e. the sum of the area of the circle and the area of
the square)?

Solution: Let’s start by drawing a picture and labeling the quantities involved:

There are many ways to proceed in this problem, depending on which quantity you
decide will be the independent variable. I will start by defining the following

x = length of wire used for square

y = length of wire used for circle

c = circumference of the circle

r = radius of the circle

` = length of one side of the square

As = area of square

Ac = area of circle

Atot = As + Ac = total area of both the square and circle

The first constraint given by the problem is that the perimeter of the square and the
circle must sum to four, x + y = 4. So we can eliminate x or y from the problem, as
we so desire. Next, using simple geometry we have the following relations between the
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quantities above:

` =
x

4
y = c = 2πr

As = `2 =
(x

4

)2

=

(
4− y

4

)2

=

(
4− c

4

)2

=

(
4− 2πr

4

)2

=

(
2− πr

2

)2

Ac = πr2 = πr2 = π
( c

2π

)2

= π
( y

2π

)2

= π

(
4− x

2π

)2

= π

(
4− 4`

2π

)2

= π

(
2− 2`

π

)2

Now we use this to derive five different functions for Atot, one for each of the five choices
of independent variable above, together with the range of values over which Atot should
be maximized . In addition, we include the first and second derivatives and any critical
numbers.

Independent variable is x:

Atot(x) = As + Ac =
(x

4

)2

+ π

(
4− x

2π

)2

0 ≤ x ≤ 4

A′tot(x) =
x

8
+
x− 4

2π

A′′tot(x) =
1

8
+

1

2π

only critical number: x =
16

π + 4

Independent variable is y:

Atot(y) = As + Ac =

(
4− y

4

)2

+ π
( y

2π

)2

0 ≤ y ≤ 4

A′tot(y) =
y − 4

8
+

y

2π

A′′tot(y) =
1

8
+

1

2π

only critical number: y =
4π

π + 4
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Independent variable is c:

Atot(c) = As + Ac =

(
4− c

4

)2

+ π
( c

2π

)2

0 ≤ c ≤ 4

A′tot(c) =
c− 4

8
+

c

2π

A′′tot(c) =
1

8
+

1

2π

only critical number: c =
4π

π + 4

Independent variable is r:

Atot(r) = As + Ac =

(
2− πr

2

)2

+ πr2 0 ≤ r ≤ 2

π

A′tot(t) =
π2r − 2π

2
+ 2πr

A′′tot(t) =
π2

2
+ 2π

only critical number: r =
2

π + 4

Independent variable is `:

Atot(`) = As + Ac = `2 + π

(
2− 2`

π

)2

0 ≤ ` ≤ 1

A′tot(`) = 2`+
8`− 8

π

A′′tot(`) = 2 +
8

π

only critical number: ` =
4

π + 4

In each case we note that the second derivative is always positive, so by the second
derivative test, any critical point will be a local minimum. One could also have noted
that each of the functions above is a concave-up parabola, so its unique critical point
must be a local minimum. In either case, it cannot be an absolute maximum at the
indicated critical point.

So, by the Extreme Value Theorem or the Closed Interval Method, the maximum area
must occur at the one of the endpoints of the specified interval. Taking the case of
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Atot(r) as an example, we find

Atot(0) = 1 Atot

(
2

π

)
= π

4

π2
=

4

π

Thus we conclude that the area enclosed is maximized when r = 2/π and that area is
4/π. In terms of the problem, this corresponds to the situation when all the wire is used
for the circle.
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15. (20 points) Let

f(x) =
2x2 − 3x

x− 2
.

Then, f ′(x) =
2(x2 − 4x+ 3)

(x− 2)2
and f ′′(x) =

4

(x− 2)3
.

(a) If there are any, find the horizontal and vertical asymptote(s) of f .

(b) Determine the critical point(s) of f . If they exist, classify each critical point as a
local maximum, a local minimum, or neither.

(c) Determine the intervals on which f is increasing/decreasing.

(d) Find the inflection point(s) of f , or show there are no inflection points.

(e) Determine the intervals on which f is concave up/down.

(f) Accurately graph the function f(x) on the axes provided on page 13. Label all
points and asymptotes found in the previous parts of the question.

Solution: (a) To find horizontal asymptotes, we compute two limits. First, we
take the limit as x approached infinity:

lim
x→∞

2x2 − 3x

x− 2
= lim

x→∞

x(2x− 3

x(1− 2/x)
= lim

x→∞

2x− 3

1− 2/x
.

Since 2/x tends to zero as x tends to infinity, the denominator tends to 1 as x
approaches infinity. As the numerator tends to infinity, the quotient also tends to
infinity. We take the second limit as x approaches negative infinity:

lim
x→−∞

2x2 − 3x

x− 2
= lim

x→−∞

x(2x− 3

x(1− 2/x)
= lim

x→−∞

2x− 3

1− 2/x
.

Since 2/x tends to zero as x tends to negative infinity, the denominator tends to 1 as
x approaches infinity. As the numerator tends to negative infinity as x approaches
negative infinity, the quotient tends to negative infinity as well. Consequently, there
are no horizontal asymptotes.

To find vertical asymptotes, we look for values x = a where one or both of the
one-sided limits of f(x) as x approaches a become unbounded. Our candidates for
values of a are zeros of the denominator, as these are places where the function
potentially tends to ±∞. Setting the denominator equal to zero gives (x − 2) = 0
or x = 2. We check the left and right-handed limits. We claim that

lim
x→2−

2x2 − 3x

x− 2
= −∞.

This is true because as x approaches two from below, the numerator tends to 6
while the numerator tends to zero from below. Similarly,

lim
x→2+

2x2 − 3x

x− 2
=∞,
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as the numerator still tends to 6 but the denominator tends to zero from above.

(b) To isolate the critical points, we first look for x in the domain of f where
f ′(x) = 0 or where f ′(x) is not defined. Setting f ′(x) = 0 yields

f ′(x) =
2(x2 − 4x+ 3)

(x− 2)2
=

2(x− 3)(x− 1)

(x− 2)2
= 0,

and we see that f ′(3) = f ′(1) = 0. While x = 2 is a location where f ′(x) is
not defined, it is not a critical number because it is not in the domain of f . As
f(3) = (18 − 9)/(3 − 2) = 9 and f(1) = (2 − 3)(1 − 2) = 1, our critical points
are (3, 9) and (1, 1). We know two ways to classify the critical points that apply in
this problem - the first and second derivative tests. For completeness, we’ll present
both, but either is sufficient.

To use the first derivative test, we plug in points to determine the sign of the
derivative in the intervals (−∞, 1), (1, 2), (2, 3) and (3,∞). As f ′(0) = 6/4 >
0, f ′(3/2) = 2(−3/2)(1/2)/(1/2)2 < 0, f ′(5/2) = 2(−1/2)(3/2)/(1/2)2 < 0, and
f ′(4) = 12/8 > 0, we have that f ′(x) > 0 on (−∞, 1) ∪ (3,∞) and f ′(x) < 0) on
(1, 2) ∪ (2, 3) (see figure). Consequently, the first derivative test says that (1, 1) is
a local maximum and (3, 9) is a local minimum.

1             2            3

+                - - +

To use the second derivative test, we plug x = 1 and x = 3 into f ′′(x), yielding
f ′′(1) = 4/(−1)3 = −4 and f ′′(3) = 4/(2)2 = 1. So, the function is concave down
at (1, 1) and hence the point is a local maximum and the function is concave up at
(3, 9) and hence the point is a local minimum.

(c) If we used the first derivative test in part (b), much of the work is done and we
conclude that f is increasing on (−∞, 1) ∪ (3,∞) and decreasing on (1, 2) ∪ (2, 3).

(d) To find potential inflection points, we look for x in the domain where f ′′(x) = 0.
Since the numerator of f ′′ is constant, we cannot find any zeros in the domain.
Therefore, there are no inflection points.

(e) To determine concavity, we test points in the two intervals that make up our
domain: (infty, 2) and (2,∞). As f ′′(0) = 4/(−2)3 = −1/2 < 0 and f ′′(3) =
4/13 = 4 > 0, we see that f is concave down on (−∞, 2) and is concave up on
(2,∞).
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Here is a set of axes where you may sketch the curve for problem 15.
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