Long answer questions

For each long answer problem, you must give a full explanation and justification of your answer to receive credit. A list of computations is not sufficient to gain credit!

11. (15 points) Let $f(x) = \frac{x-10}{x-5}$. Find f'(x) and f''(x). Then find all the points where f'(x) = f''(x). Remember you must justify your answers to receive credit. Solution:

First, we find f'(x) using differentiation rules:

$$\frac{d}{dx}f(x) = \frac{d}{dx}\frac{x-10}{x-15}$$

By the quotient rule this is

$$\frac{\left(\frac{d}{dx}(x-10)\right)(x-5) - (x-10)\frac{d}{dx}(x-5)}{(x-5)^2}$$

Since, by the power and sum rules, $\frac{d}{dx}(x-10) = \frac{d}{dx}(x-5) = 1$, this simplifies to

$$\frac{1(x-5) - (x-10)1}{(x-5)^2} = \frac{x-5-x+10}{(x-5)^2} = \frac{5}{(x-5)^2}.$$

Second, we'll find f''(x) using differentiation rules. While we could use the quotient rule again, we'll instead write $f'(x) = 5(x-5)^{-2}$ and use the constant multiple, power, and chain rules to find,

$$f''(x) = 5(-2)(x-5)^{-2-1} = -10(x-5)^{-3} = \frac{-10}{(x-5)^3}$$

To find the values of x where f'(x) = f''(x), we set the two equal and algebraically simplify:

$$\frac{5}{(x-5)^2} = \frac{-10}{(x-5)^3}$$

5(x-5) = -10 (multiply both sides by (x - 5)³)
5x = -10 + 25 = 15
x = 3

To find the y value associated to this point, we use the definition of f,

$$f(3) = \frac{3-10}{3-5} = \frac{-7}{-2} = \frac{7}{2},$$

so the only point where the two are equal is $(3, \frac{7}{2})$.

- 12. (10 points) Compute the second derivatives of each of the following functions:
 - (a) $f(x) = \sin(e^x)$.
 - (b) $h(x) = (1 + 2x^2)^{10}$.

Remember you must justify your answers to receive credit.

a. For the first derivative, we must use the chain rule:

$$f(g(x)) = F'(g(x)) - g'(x)$$
In combination with the special trig derivatives:

$$f(x) = \sin(e^{x}) - \text{Let } F(x) = \sin(x), \quad G(x) = e^{x}$$
Then $F'(x) = F'(G(x)) - G'(x) = \cos(e^{x}) - e^{x}$
For the second derivative, we must use the product rule:

$$= f - g(x) = f'(x)g(x) + f(x)g'(x)$$
Let $F(x) = e^{x}$, $G(x) = \cos(e^{x})$. Then

$$f^{2}(x) = e^{x} (\cos(e^{x}) + e^{x} (\cos(e^{x}))^{2}, we use the chain rule)$$
for $(\cos(e^{x}))^{2}$ similar to above:

$$f^{2}(x) = e^{2} \cos(e^{x}) - (e^{x})^{2} \sin(e^{x})$$

b. For the first derivative, we must use the chain rule
Let
$$F(x) = \chi^{10}$$
, $F(x) = 1 + 2x^2$. Then
 $\overline{[W(x)]} = 10(1+2x^2)^9 \cdot 4\chi$

For the second derivative, we must use the product rule (et $F(x) = 10(1+3x^2)^9$, G(x) = 47x. Then $h^{22}(x) = (10(1+3x^2)^9)^2$. $4x + (10(1+3x^2)^9) \cdot 4^{-1}$

To find F'00, we need to use the chain rule, with the acter function being 10x⁹ and the oner being 1+2x² (similar to above) Then

$$h^{2}(x) = (90(1+2x^{2})^{8}) \cdot 4x \cdot 4x + 40(1+2x^{2})^{9}$$

$$\int = 1440x^{2}(1+2x^{2})^{8} + 40(1+2x^{2})^{9}$$

13. (20 points) Let g(y) = y/(y-3). Remember you must justify your answers to receive credit.
a) What is the domain of g(y)?

Since division by 0 is not allowed,
the function
$$g(y)$$
 is not defined when $y-3=0$,
or equivalently when $y=3$.
Therefore the domain of g is $\int y | y \neq 3$,
or in interval notation,
 $(-\infty, 3) \cup (3, \infty)$

b) Where is g continuous? Classify any discontinuities you find.

Since g is a rational function, we know
that it is continuous wherever it is defined.
Therefore, it is continuous on its domain,
$$(-\infty, 3) \cup (3, \infty)$$
.
The only discontinuity is at $y=3$.
Since we have
 $\lim_{y\to 3^+} \frac{y}{y-3} = \infty + \lim_{y\to 3^-} \frac{y}{y-3} = -\infty$,
it has an infinite discontinuity at $y=3$.

(This problem is continued on the next page.)

c) What is the derivative of g(y)?

We apply the quotient rule;

$$g'(y) = \frac{(y)' \cdot (y-3) - y \cdot (y-3)'}{(y-3)^2}$$

$$= \frac{1 \cdot (y-3) - y \cdot 1}{(y-3)^2}$$

$$= -\frac{3}{(y-3)^2}$$

d) Find the equation of the tangent line to z = g(y) at the point where y = 4 and z = 4. The above of the tangent line of y = 4 is g'(4).

The slope of the tangent line at
$$y=4$$
 is $g'(4)$.
Therefore $m=g'(4)=-\frac{3}{(4-3)^2}=-3$.
Using the point-slope form of the equation of
a line, with the given point $(4, 4)$, we obtain
an equation of the tangent line as
 $\ddagger 2-4=-3(y-4)$.

* abternative solution: The slope-intercept form gives

$$Z = -3Y + h$$
. Substituting $Y = 4 + Z = 4$, we get
 $4 = -3 \cdot 4 + h$, or $h = 4 + 12 = 1b$.
Therefore, the equation of the tangent line is
 $Z = -3Y + 1b$.

- 14. (15 points) Let $h(s) = \cos(s) + s^4 3s^2 + 5$. Remember you must justify your answers to receive credit.
 - a) State the definitions of even and odd for functions.

A function f is called even if f(-x) = f(x) for every number x. A function f is called odd if f(-x) = -f(x) for every number x.

b) Find h'(s).

Using the rule $\frac{d}{dx} [f(x) \pm g(x)] = \frac{d}{dx} [f(x)] \pm \frac{d}{dx} [g(x)]$, as well as the special derivative $\frac{d}{dx} [\cos(s)] = -\sin(s)$ and power rule, we have $h'(s) = \frac{d}{ds} [\cos(s)] \pm \frac{d}{ds} [s^{4}] - \frac{d}{ds} [3s^{2}] \pm \frac{d}{ds} [5]$ $= -\sin(s) \pm 4s^{3} - 3\frac{d}{ds} [s^{2}] \pm 0$

$$= -5in(s) + 45^3 - 65$$

(This problem is continued on the next page.)

c) Is h(s) even, odd, both, or neither? Is h'(s) even, odd, both, or neither?

First note that $(bs(\theta))$ is an even function. This is because the point (xry) on the unit circle corresponding to the angle θ has the same x-value as the point corresponding to the angle $-\theta$:

By similar reasoning,
$$\sin\theta$$
 is an odd function, i.e.
 $\sin(-\theta) = -\sin(\theta)$. So for any number s
 $h(-s) = (\sigma s (-s) + (-s)^{4} - 3(-s)^{2} + 5)$
 $= (\sigma s (s) + s^{4} - 3s^{2} + 5)$
 $= h(s)$

and h(s) is even. Similarly for any number S $h'(-s) = -\sin(-s) + 4(-s)^{3} - 6(-s)$ $= -(-\sin(s)) - 4s^{3} + 6s$ $= -(-\sin(s) + 4s^{3} - 6s)$ = -h'(s)and h'(s) is odd.

15. (10 points) Let

Ø

$$f(x) = x^3 - 6x^2 - 15x + 128.$$

Find all the points on the graph y = f(x) where the tangent line is horizontal. Remember you must justify your answers to receive credit.

The tangent line to a graph is horizontal provisely when
$$f'(c)=0$$
.
(1) Using the Power Rule, we compute $f'(x)=3x^2-12x-15$
And then by retting $f'(x)=0$, we solve for x, obtaining..
 $f'(x)=0 \Rightarrow 3(x^2-4x-5)=0$
 $\Rightarrow 3(x-5)(x+1)=0$
 $\Rightarrow [x=5, x=-1]$
To find the points on the graph, we then evaluate $f(s)$ and $f(-1)$
to find the y-values:
 $f(s)=(s)^3-t_0(s)^2-1s(s)+128$
 $=12s-150-75+128 \Rightarrow [(5,28)]$
(+1) $=-100+128=28$
 $f(-1)=(-1)^3-t_0(-1)^2-1s(-1)+128$
 $=-1-t_0+15+128 \Rightarrow [(-1, 136)]$

16. (10 points) Let h(x) be defined by

$$h(x) = egin{cases} x^2 \sin(rac{x^3-4x+3}{x}) & x
eq 0\,, \ c & x = 0\,, \end{cases}$$

where c is a constant. For which value of c is h(x) continuous at x = 0? Hint: Recall that $-1 \le \sin(z) \le 1$ for all z. Remember you must justify your answers to receive credit.

$$-|\leq \sin\left(\frac{x^3-4x+3}{x}\right)\leq |$$
 for all $x\neq 0$.

Multiplying by
$$x^2$$
 gives us
 $-x^2 \le x^2 \sin\left(\frac{x^3 - 4x + 3}{x}\right) \le x^2$ for all $x \ne 0$.
Taking limits as x approaches 0 , we get
 $\lim_{x \to 0} -x^2 \le \lim_{x \to 0} x^2 \sin\left(\frac{x^3 - 4x + 3}{x}\right) \le \lim_{x \to 0} x^2$.
Since $\lim_{x \to 0} -x^2 = 0$ and $\lim_{x \to 0} x^2 = 0$, by the squeeze theorem, we get
 $x \Rightarrow 0$ $x \Rightarrow 0$
 $\lim_{x \to 0} x^2 \sin\left(\frac{x^3 - 4x + 3}{x}\right) = 0$, so $\lim_{x \to 0} h(x) = 0$.
For $h(x)$ to be continuous at $x = 0$, we need $\lim_{x \to 0} h(x) = h(0)$
 $x \Rightarrow 0$