Long answer questions

For each long answer problem, you must give a full explanation and justification of your answer to receive credit. A list of computations is not sufficient to gain credit!
11. (15 points) Let $f(x)=\frac{x-10}{x-5}$. Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$. Then find all the points where $f^{\prime}(x)=f^{\prime \prime}(x)$. Remember you must justify your answers to receive credit. Solution:

First, we find $f^{\prime}(x)$ using differentiation rules:

$$
\frac{d}{d x} f(x)=\frac{d}{d x} \frac{x-10}{x-15}
$$

By the quotient rule this is

$$
\frac{\left(\frac{d}{d x}(x-10)\right)(x-5)-(x-10) \frac{d}{d x}(x-5)}{(x-5)^{2}} .
$$

Since, by the power and sum rules, $\frac{d}{d x}(x-10)=\frac{d}{d x}(x-5)=1$, this simplifies to

$$
\frac{1(x-5)-(x-10) 1}{(x-5)^{2}}=\frac{x-5-x+10}{(x-5)^{2}}=\frac{5}{(x-5)^{2}}
$$

Second, we'll find $f^{\prime \prime}(x)$ using differentiation rules. While we could use the quotient rule again, we'll instead write $f^{\prime}(x)=5(x-5)^{-2}$ and use the constant multiple, power, and chain rules to find,

$$
f^{\prime \prime}(x)=5(-2)(x-5)^{-2-1} 1=-10(x-5)^{-3}=\frac{-10}{(x-5)^{3}}
$$

To find the values of x where $f^{\prime}(x)=f^{\prime \prime}(x)$, we set the two equal and algebraically simplify:

$$
\begin{aligned}
\frac{5}{(x-5)^{2}} & =\frac{-10}{(x-5)^{3}} \\
5(x-5) & \left.=-10 \quad \text { (multiply both sides by }(x-5)^{3}\right) \\
5 x & =-10+25=15 \\
x & =3
\end{aligned}
$$

To find the y value associated to this point, we use the definition of f,

$$
f(3)=\frac{3-10}{3-5}=\frac{-7}{-2}=\frac{7}{2}
$$

so the only point where the two are equal is $\left(3, \frac{7}{2}\right)$.
12. (10 points) Compute the second derivatives of each of the following functions:
(a) $f(x)=\sin \left(e^{x}\right)$.
(b) $h(x)=\left(1+2 x^{2}\right)^{10}$.

Remember you must justify your answers to receive credit.
a. For the first derivative, we must un g the chain rule:

$$
f(g(x))=f^{\prime}(g(x)) \cdot g(x)
$$

in combination with the special tia derivatives:
$f(x)=\sin \left(e^{x}\right)$ Let $F(x)=\sin (x), S(x)=e^{x}$
Then $x^{\prime}(x)=T^{2}(x) \cdot x^{2}(x)=\cos \left(e^{x}\right) \cdot e^{x}$
For the second derivative, we must use the product rule:

$$
f \cdot g(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

Let $F(x)=e^{x}, G(x)=\cos \left(e^{x}\right)$. Then
$f^{22}(x)=e^{x} \cos \left(x^{2}\right)^{2}+2^{2 x}\left(\cos ^{2} \cos ^{2}\right)^{2}$. We use the chain rule
for $\left(\cos \left(e^{x}\right)\right)^{2}$, simitar to above:
$f^{2}(x)=e^{x} \cos \left(e^{x}\right)-\left(e^{x}\right)^{2} \sin \left(e^{x}\right)$
b. For the first derivative, we must use the chain rule

Let $F(x)=x^{10}, \cos ^{2} x+1+2 x^{2}$. Then
$h^{\prime}(x)=10\left(1+2 x^{2}\right)^{9} \cdot 4 x$
For the second derivative, we must use the product rule lex $F(x) \cdot 10\left(1+2 x^{2}\right)^{9}, G(x)=4 x$. Then

$$
h^{2}\left(2 x^{3} \cdot\left(10\left(1+2 x^{2}\right)^{9}\right)^{3} \cdot 4 x+\left(10\left(1+2 x^{2}\right)^{9}\right) \cdot 4\right.
$$

To find $F^{\prime}(x)$, we need to use the chain rove, with the outer function being $10 x^{3}$ and the mower being $1+2 x^{2}$ (simitar to above
Then

$$
\begin{aligned}
h^{\prime 3}(x) & =\left(90\left(1+2 x^{2}\right)^{8}\right) \cdot 4 x \cdot 4 x+40\left(1+2 x^{2}\right)^{9} \\
r & \left.=1440 x^{2}\left(1+2 x^{2}\right)^{8}+40\left(1+2 x^{2}\right)^{9}\right)
\end{aligned}
$$

13. (20 points) Let $g(y)=\frac{y}{y-3}$. Remember you must justify your answers to receive credit.
a) What is the domain of $g(y)$?

Since division by 0 is not allowed, the function $g(y)$ is not defined when $y-3=0$, or equivalently when $y=3$.
Therefore the domain of g is $\{y \mid y \neq 3\}$, or in interval notation,

$$
(-\infty, 3) \cup(3, \infty)
$$

b) Where is g continuous? Classify any discontinuities you find.

Since g is a rational function, we know that it is continuous wherever it is defined. Therefore, it is continuous on its domain, $(-\infty, 3) \cup(3, \infty)$. The only discontinuity is at $y=3$.
Since we have

$$
\lim _{y \rightarrow 3^{+}} \frac{y}{y-3}=\infty \quad+\lim _{y \rightarrow 3^{-}} \frac{y}{y-3}=-\infty
$$

it has an infinite discontinuity at $y=3$.
(This problem is continued on the next page.)
c) What is the derivative of $g(y)$?

We apply the quotient rule;

$$
\begin{aligned}
g^{\prime}(y) & =\frac{(y)^{\prime} \cdot(y-3)-y \cdot(y-3)^{\prime}}{(y-3)^{2}} \\
& =\frac{1 \cdot(y-3)-y \cdot 1}{(y-3)^{2}} \\
& =-\frac{3}{(y-3)^{2}} .
\end{aligned}
$$

d) Find the equation of the tangent line to $z=g(y)$ at the point where $y=4$ and $z=4$.
The slope ${ }^{m}$ of the tangent line at $y=4$ is $g^{\prime}(4)$.
Therefore $m=g^{\prime}(4)=-\frac{3}{(4-3)^{2}}=-3$.
Using the point-slope form of the equation of a line, with the given point $(4,4)$, we obtain an equation of the tangent line as

$$
\text { 等 } z-4=-3(y-4)
$$

* alternative solution: The slope-intercept form gives $z=-3 y+b$. Substituting $y=4+z=4$, we get $4=-3 \cdot 4+b$, or $b=4+12=16$.
Therefore, the equation of the tangent line is

$$
z=-3 y+16
$$

14. (15 points) Let $h(s)=\cos (s)+s^{4}-3 s^{2}+5$. Remember you must justify your answers to receive credit.
a) State the definitions of even and odd for functions.

A function f is called even if $f(-x)=f(x)$ for every number X.

A function f is called odd if $f(-x)=-f(x)$ for every number X.
b) Find $h^{\prime}(s)$.

Using the rale $\frac{d}{d x}[f(x) \pm g(x)]=\frac{d}{d x}\left[[(x)] \pm \frac{d}{d x}[g(x)]\right.$, as well as the special derivative $\frac{d}{d 8}[\cos (s)]=-\sin (s)$ and power mule, we have

$$
\begin{aligned}
h^{\prime}(s) & =\frac{d}{d s}[\cos (s)]+\frac{d}{d s}\left[s^{4}\right]-\frac{d}{d s}\left[3 s^{2}\right]+\frac{d}{d s}[s] \\
& =-\sin (s)+4 s^{3}-3 \frac{d}{d s}\left[s^{2}\right]+0 \\
& =-\sin (s)+4 s^{3}-6 s
\end{aligned}
$$

(This problem is continued on the next page.)
c) Is $h(s)$ even, odd, both, or neither? Is $h^{\prime}(s)$ even, odd, both, or neither?

First note that $\cos (\theta)$ is an even function. This is because the point (x, y) on the unit circle corresponding to the angle θ has the same x-value as the point corresponding to the angle $-\theta$:

$$
\begin{aligned}
& \cos \theta=x \\
& \cos (-\theta)=x
\end{aligned}
$$

By similar reasoning, $\sin \theta$ is an odd function, i.e. $\sin (-\theta)=-\sin (\theta)$. So for any number s

$$
\begin{aligned}
h(-s) & =\cos (-s)+(-s)^{4}-3(-s)^{2}+5 \\
& =\cos (s)+s^{4}-3 s^{2}+5 \\
& =h(s)
\end{aligned}
$$

and $h(s)$ is even. Similarly for any number s

$$
\begin{aligned}
h^{\prime}(-s) & =-\sin (-s)+4(-s)^{3}-6(-s) \\
& =-(-\sin (s))-4 s^{3}+6 s \\
& =-\left(-\sin (s)+4 s^{3}-6 s\right) \\
& =-h^{\prime}(s)
\end{aligned}
$$

and $h^{\prime}(s)$ is odd.
15. (10 points) Let

$$
f(x)=x^{3}-6 x^{2}-15 x+128
$$

Find all the points on the graph $y=f(x)$ where the tangent line is horizontal. Remember you must justify your answers to receive credit.
(+3) The tangent line to a graph is horizontal precisely when $f^{\prime}(c)=0$.
(1)
(4) Using the Power Rule, we compute $f^{\prime}(x)=3 x^{2}-12 x-15$

And then by retting $f^{\prime}(x)=0$, we solve for x, obtaining...
(1)

$$
\begin{aligned}
f^{\prime}(x)=0 & \Rightarrow 3\left(x^{2}-4 x-5\right)=0 \\
& \Rightarrow 3(x-5)(x+1)=0 \\
& \Rightarrow x=5, x=-1
\end{aligned}
$$

To find the points on the graph, we then evaluate $f(s)$ and $f(-1)$
(4) to find the y-values:

$$
\begin{aligned}
f(5) & =(5)^{3}-6(5)^{2}-15(5)+128 \\
& =125-150-75+128 \Rightarrow(5,28) \\
& =-100+128=28 \\
f(-1) & =(-1)^{3}-6(-1)^{2}-15(-1)+128 \\
& =-1-6+15+128 \\
& =8+128 \quad \Rightarrow 14=136
\end{aligned}
$$

16. (10 points) Let $h(x)$ be defined by

$$
h(x)= \begin{cases}x^{2} \sin \left(\frac{x^{3}-4 x+3}{x}\right) & x \neq 0 \\ c & x=0\end{cases}
$$

where c is a constant. For which value of c is $h(x)$ continuous at $x=0$? Hint: Recall that $-1 \leq \sin (z) \leq 1$ for all z. Remember you must justify your answers to receive credit.

$$
-1 \leq \sin \left(\frac{x^{3}-4 x+3}{x}\right) \leq 1 \quad \text { for all } x \neq 0
$$

Multiplying by x^{2} gives us

$$
-x^{2} \leq x^{2} \sin \left(\frac{x^{3}-4 x+3}{x}\right) \leq x^{2} \text {, for all } x \neq 0 \text {. }
$$

Taking limits as x approaches 0 , we get

$$
\lim _{x \rightarrow 0}-x^{2} \leq \lim _{x \rightarrow 0} x^{2} \sin \left(\frac{x^{3}-4 x+3}{x}\right) \leq \lim _{x \rightarrow 0} x^{2}
$$

Since $\lim _{x \rightarrow 0}-x^{2}=0$ and $\lim _{x \rightarrow 0} x^{2}=0$, by the squeeze theorems, we get

$$
\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{x^{3}-4 x+3}{x}\right)=0, \text { so } \lim _{x \rightarrow 0} h(x)=0
$$

For $h(x)$ to be continuous at $x=0$, we need $\lim _{x \rightarrow 0} h(x)=h(0)$
Since $\lim _{x \rightarrow 0} h(x)=0$, and $h(0)=c$, setting $C=0$ makes $h(x)$ continuous at $x=0$.

