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The fundamental objects that we deal with in calculus are functions. This chapter
prepares the way for calculus by discussing the basic ideas concerning functions, their
graphs, and ways of transforming and combining them. We stress that a function can be
represented in different ways: by an equation, in a table, by a graph, or in words. We
look at the main types of functions that occur in calculus and describe the process of
using these functions as mathematical models of real-world phenomena. We also discuss
the use of graphing calculators and graphing software for computers.

A graphical representation of a 
function––here the number of 
hours of daylight as a function 
of the time of year at various 
latitudes––is often the most 

natural and convenient way to 
represent the function.
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FOUR WAYS TO REPRESENT A FUNCTION

Functions arise whenever one quantity depends on another. Consider the following four
situations.

A. The area of a circle depends on the radius of the circle. The rule that connects 
and is given by the equation . With each positive number there is associ-
ated one value of , and we say that is a function of .

B. The human population of the world depends on the time . The table gives estimates
of the world population at time for certain years. For instance,

But for each value of the time there is a corresponding value of and we say that 
is a function of .

C. The cost of mailing a first-class letter depends on the weight of the letter.
Although there is no simple formula that connects and , the post office has a rule
for determining when is known.

D. The vertical acceleration of the ground as measured by a seismograph during an
earthquake is a function of the elapsed time Figure 1 shows a graph generated by
seismic activity during the Northridge earthquake that shook Los Angeles in 1994.
For a given value of the graph provides a corresponding value of .

Each of these examples describes a rule whereby, given a number ( , , , or ), another
number ( , , , or ) is assigned. In each case we say that the second number is a func-
tion of the first number.

A function is a rule that assigns to each element in a set exactly one ele-
ment, called , in a set .

We usually consider functions for which the sets and are sets of real numbers. The
set is called the domain of the function. The number is the value of at and is
read “ of .” The range of is the set of all possible values of as varies through-
out the domain. A symbol that represents an arbitrary number in the domain of a function

is called an independent variable. A symbol that represents a number in the range of 
is called a dependent variable. In Example A, for instance, r is the independent variable
and A is the dependent variable.
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1900 1650
1910 1750
1920 1860
1930 2070
1940 2300
1950 2560
1960 3040
1970 3710
1980 4450
1990 5280
2000 6080



It’s helpful to think of a function as a machine (see Figure 2). If is in the domain of
the function then when enters the machine, it’s accepted as an input and the machine
produces an output according to the rule of the function. Thus we can think of the
domain as the set of all possible inputs and the range as the set of all possible outputs.

The preprogrammed functions in a calculator are good examples of a function as a
machine. For example, the square root key on your calculator computes such a function.
You press the key labeled (or ) and enter the input x. If , then is not in the
domain of this function; that is, is not an acceptable input, and the calculator will indi-
cate an error. If , then an approximation to will appear in the display. Thus the

key on your calculator is not quite the same as the exact mathematical function defined
by .

Another way to picture a function is by an arrow diagram as in Figure 3. Each arrow
connects an element of to an element of . The arrow indicates that is associated
with is associated with , and so on.

The most common method for visualizing a function is its graph. If is a function with
domain , then its graph is the set of ordered pairs

(Notice that these are input-output pairs.) In other words, the graph of consists of all
points in the coordinate plane such that and is in the domain of .

The graph of a function gives us a useful picture of the behavior or “life history” of
a function. Since the -coordinate of any point on the graph is , we can read
the value of from the graph as being the height of the graph above the point (see
Figure 4). The graph of also allows us to picture the domain of on the -axis and its
range on the -axis as in Figure 5.

EXAMPLE 1 The graph of a function is shown in Figure 6.
(a) Find the values of and .
(b) What are the domain and range of ?

SOLUTION
(a) We see from Figure 6 that the point lies on the graph of , so the value of
at 1 is . (In other words, the point on the graph that lies above x ! 1 is 3 units
above the x-axis.)

When x ! 5, the graph lies about 0.7 unit below the x-axis, so we estimate that
.

(b) We see that is defined when , so the domain of is the closed inter-
val . Notice that takes on all values from "2 to 4, so the range of is
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FIGURE 2
Machine diagram for a function ƒ
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EXAMPLE 2 Sketch the graph and find the domain and range of each function.
(a) (b)

SOLUTION
(a) The equation of the graph is , and we recognize this as being the equa-
tion of a line with slope 2 and y-intercept "1. (Recall the slope-intercept form of the
equation of a line: . See Appendix B.) This enables us to sketch a portion of
the graph of in Figure 7. The expression is defined for all real numbers, so the
domain of is the set of all real numbers, which we denote by !. The graph shows that
the range is also !.

(b) Since and , we could plot the points and
, together with a few other points on the graph, and join them to produce the

graph (Figure 8). The equation of the graph is , which represents a parabola (see
Appendix C). The domain of t is !. The range of t consists of all values of , that is,
all numbers of the form . But for all numbers x and any positive number y is a
square. So the range of t is . This can also be seen from Figure 8. M

EXAMPLE 3 If and , evaluate .

SOLUTION We first evaluate by replacing by in the expression for :

Then we substitute into the given expression and simplify:

M

REPRESENTATIONS OF FUNCTIONS

There are four possible ways to represent a function:

! verbally (by a description in words)

! numerically (by a table of values)

! visually (by a graph)

! algebraically (by an explicit formula)

If a single function can be represented in all four ways, it’s often useful to go from one
representation to another to gain additional insight into the function. (In Example 2, for
instance, we started with algebraic formulas and then obtained the graphs.) But certain 
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functions are described more naturally by one method than by another. With this in mind,
let’s reexamine the four situations that we considered at the beginning of this section.

A. The most useful representation of the area of a circle as a function of its radius is
probably the algebraic formula , though it is possible to compile a table of
values or to sketch a graph (half a parabola). Because a circle has to have a positive
radius, the domain is , and the range is also .

B. We are given a description of the function in words: is the human population of
the world at time t. The table of values of world population provides a convenient
representation of this function. If we plot these values, we get the graph (called a
scatter plot) in Figure 9. It too is a useful representation; the graph allows us to
absorb all the data at once. What about a formula? Of course, it’s impossible to devise
an explicit formula that gives the exact human population at any time t. But it is
possible to find an expression for a function that approximates . In fact, using
methods explained in Section 1.2, we obtain the approximation

and Figure 10 shows that it is a reasonably good “fit.” The function is called a
mathematical model for population growth. In other words, it is a function with an
explicit formula that approximates the behavior of our given function. We will see,
however, that the ideas of calculus can be applied to a table of values; an explicit
formula is not necessary.

The function is typical of the functions that arise whenever we attempt to apply
calculus to the real world. We start with a verbal description of a function. Then we
may be able to construct a table of values of the function, perhaps from instrument
readings in a scientific experiment. Even though we don’t have complete knowledge
of the values of the function, we will see throughout the book that it is still possible to
perform the operations of calculus on such a function.

C. Again the function is described in words: is the cost of mailing a first-class letter
with weight . The rule that the US Postal Service used as of 2007 is as follows: The
cost is 39 cents for up to one ounce, plus 24 cents for each successive ounce up to 13
ounces. The table of values shown in the margin is the most convenient representation
for this function, though it is possible to sketch a graph (see Example 10).

D. The graph shown in Figure 1 is the most natural representation of the vertical acceler-
ation function . It’s true that a table of values could be compiled, and it is even a!t"
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possible to devise an approximate formula. But everything a geologist needs to
know—amplitudes and patterns—can be seen easily from the graph. (The same is
true for the patterns seen in electrocardiograms of heart patients and polygraphs for
lie-detection.)

In the next example we sketch the graph of a function that is defined verbally.

EXAMPLE 4 When you turn on a hot-water faucet, the temperature of the water
depends on how long the water has been running. Draw a rough graph of as a function
of the time that has elapsed since the faucet was turned on.

SOLUTION The initial temperature of the running water is close to room temperature
because the water has been sitting in the pipes. When the water from the hot-water tank
starts flowing from the faucet, increases quickly. In the next phase, is constant at the
temperature of the heated water in the tank. When the tank is drained, decreases to 
the temperature of the water supply. This enables us to make the rough sketch of as a
function of in Figure 11. M

In the following example we start with a verbal description of a function in a physical
situation and obtain an explicit algebraic formula. The ability to do this is a useful skill in
solving calculus problems that ask for the maximum or minimum values of quantities.

EXAMPLE 5 A rectangular storage container with an open top has a volume of 10 m .
The length of its base is twice its width. Material for the base costs $10 per square
meter; material for the sides costs $6 per square meter. Express the cost of materials as a
function of the width of the base.

SOLUTION We draw a diagram as in Figure 12 and introduce notation by letting and
be the width and length of the base, respectively, and be the height.

The area of the base is , so the cost, in dollars, of the material for the
base is . Two of the sides have area and the other two have area , so the
cost of the material for the sides is . The total cost is therefore

To express as a function of alone, we need to eliminate and we do so by using the
fact that the volume is 10 m . Thus

which gives

Substituting this into the expression for , we have

Therefore, the equation
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EXAMPLE 6 Find the domain of each function.

(a) (b)

SOLUTION
(a) Because the square root of a negative number is not defined (as a real number),
the domain of consists of all values of x such that . This is equivalent to

, so the domain is the interval .

(b) Since

and division by is not allowed, we see that is not defined when or .
Thus the domain of is

which could also be written in interval notation as

M

The graph of a function is a curve in the -plane. But the question arises: Which curves
in the -plane are graphs of functions? This is answered by the following test.

THE VERTICAL LINE TEST A curve in the -plane is the graph of a function of if
and only if no vertical line intersects the curve more than once.

The reason for the truth of the Vertical Line Test can be seen in Figure 13. If each ver-
tical line intersects a curve only once, at , then exactly one functional value 
is defined by . But if a line intersects the curve twice, at and ,
then the curve can’t represent a function because a function can’t assign two different val-
ues to .

For example, the parabola shown in Figure 14(a) on the next page is not the
graph of a function of because, as you can see, there are vertical lines that intersect the
parabola twice. The parabola, however, does contain the graphs of two functions of .
Notice that the equation implies , so Thus the
upper and lower halves of the parabola are the graphs of the functions 
[from Example 6(a)] and . [See Figures 14(b) and (c).] We observe that
if we reverse the roles of and , then the equation does define as a
function of (with as the independent variable and as the dependent variable) and the
parabola now appears as the graph of the function .h
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N If a function is given by a formula and the
domain is not stated explicitly, the convention is
that the domain is the set of all numbers for
which the formula makes sense and defines a
real number.



PIECEWISE DEFINED FUNCTIONS

The functions in the following four examples are defined by different formulas in differ-
ent parts of their domains.

EXAMPLE 7 A function is defined by

Evaluate , , and and sketch the graph.

SOLUTION Remember that a function is a rule. For this particular function the rule is the
following: First look at the value of the input . If it happens that , then the value
of is . On the other hand, if , then the value of is .

How do we draw the graph of ? We observe that if , then , so the
part of the graph of that lies to the left of the vertical line must coincide with
the line , which has slope and -intercept 1. If , then , so
the part of the graph of that lies to the right of the line must coincide with the
graph of , which is a parabola. This enables us to sketch the graph in Figure 15.
The solid dot indicates that the point is included on the graph; the open dot indi-
cates that the point is excluded from the graph. M

The next example of a piecewise defined function is the absolute value function. Recall
that the absolute value of a number , denoted by , is the distance from to on the
real number line. Distances are always positive or , so we have

for every number 

For example,

In general, we have
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EXAMPLE 8 Sketch the graph of the absolute value function .

SOLUTION From the preceding discussion we know that

Using the same method as in Example 7, we see that the graph of coincides with the
line to the right of the -axis and coincides with the line to the left of the
-axis (see Figure 16). M

EXAMPLE 9 Find a formula for the function graphed in Figure 17.

SOLUTION The line through and has slope and -intercept , so its
equation is . Thus, for the part of the graph of that joins to , we have

The line through and has slope , so its point-slope form is

So we have

We also see that the graph of coincides with the -axis for . Putting this informa-
tion together, we have the following three-piece formula for :

M

EXAMPLE 10 In Example C at the beginning of this section we considered the cost 
of mailing a first-class letter with weight . In effect, this is a piecewise defined function
because, from the table of values, we have

The graph is shown in Figure 18. You can see why functions similar to this one are
called step functions—they jump from one value to the next. Such functions will be
studied in Chapter 2. M
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SYMMETRY

If a function satisfies for every number in its domain, then is called an
even function. For instance, the function is even because

The geometric significance of an even function is that its graph is symmetric with respect
to the -axis (see Figure 19). This means that if we have plotted the graph of for ,
we obtain the entire graph simply by reflecting this portion about the -axis.

If satisfies for every number in its domain, then is called an odd
function. For example, the function is odd because

The graph of an odd function is symmetric about the origin (see Figure 20). If we  already
have the graph of for , we can obtain the entire graph by rotating this portion
through about the origin.

EXAMPLE 11 Determine whether each of the following functions is even, odd, or
neither even nor odd.
(a) (b) (c)

SOLUTION

(a)

Therefore is an odd function.

(b)

So is even.

(c)

Since and , we conclude that is neither even nor odd. M

The graphs of the functions in Example 11 are shown in Figure 21. Notice that the
graph of h is symmetric neither about the y-axis nor about the origin.
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INCREASING AND DECREASING FUNCTIONS

The graph shown in Figure 22 rises from to , falls from to , and rises again from 
to . The function is said to be increasing on the interval , decreasing on , and
increasing again on . Notice that if and are any two numbers between and 
with , then . We use this as the defining property of an increasing
function.

A function is called increasing on an interval if

It is called decreasing on if

In the definition of an increasing function it is important to realize that the inequality
must be satisfied for every pair of numbers and in with .

You can see from Figure 23 that the function is decreasing on the interval
and increasing on the interval .!0, !"#"!, 0$
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FIGURE 23
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1. The graph of a function is given.
(a) State the value of .

(b) Estimate the value of .

(c) For what values of x is ?

(d) Estimate the values of x such that .

(e) State the domain and range of .

(f) On what interval is increasing?f
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varies over time. What do you think happened when this person
was 30 years old?

10. The graph shown gives a salesman’s distance from his home as
a function of time on a certain day. Describe in words what the
graph indicates about his travels on this day.

You put some ice cubes in a glass, fill the glass with cold
water, and then let the glass sit on a table. Describe how the
temperature of the water changes as time passes. Then sketch a
rough graph of the temperature of the water as a function of the
elapsed time.

12. Sketch a rough graph of the number of hours of daylight as a
function of the time of year.

Sketch a rough graph of the outdoor temperature as a function
of time during a typical spring day.

14. Sketch a rough graph of the market value of a new car as a
function of time for a period of 20 years. Assume the car is
well maintained.

15. Sketch the graph of the amount of a particular brand of coffee
sold by a store as a function of the price of the coffee.

16. You place a frozen pie in an oven and bake it for an hour. Then
you take it out and let it cool before eating it. Describe how the
temperature of the pie changes as time passes. Then sketch a
rough graph of the temperature of the pie as a function of time.

17. A homeowner mows the lawn every Wednesday afternoon.
Sketch a rough graph of the height of the grass as a function of
time over the course of a four-week period.

18. An airplane takes off from an airport and lands an hour later at
another airport, 400 miles away. If t represents the time in min-
utes since the plane has left the terminal building, let be x#t"

13.

11.

8 AM 10 NOON 2 4 Time
(hours)

Distance
from home

(miles)

6 PM

Age
(years)

Weight
(pounds)

0

150
100
50

10

200

20 30 40 50 60 70

The graphs of and t are given.
(a) State the values of and .
(b) For what values of x is ?
(c) Estimate the solution of the equation .
(d) On what interval is decreasing?
(e) State the domain and range of 
(f) State the domain and range of t.

3. Figure 1 was recorded by an instrument operated by the Cali-
fornia Department of Mines and Geology at the University
Hospital of the University of Southern California in Los Ange-
les. Use it to estimate the range of the vertical ground accelera-
tion function at USC during the Northridge earthquake.

4. In this section we discussed examples of ordinary, everyday
functions: Population is a function of time, postage cost is a
function of weight, water temperature is a function of time.
Give three other examples of functions from everyday life that
are described verbally. What can you say about the domain and
range of each of your functions? If possible, sketch a rough
graph of each function.

5–8 Determine whether the curve is the graph of a function of . 
If it is, state the domain and range of the function.

5. 6.

7. 8.

The graph shown gives the weight of a certain person as a
function of age. Describe in words how this person’s weight 

9.

y

x0 1

1

y

x0

1

1

y

x0 1

1

y

x0 1

1

x

g

x

y

0

f
2

2

f.
f

f #x" ! "1
f #x" ! t#x"

t#3"f #"4"
f2.
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32. Find the domain and range and sketch the graph of the function
.

33–44 Find the domain and sketch the graph of the function.

33. 34.

35. 36.

37. 38.

40.

41.

42.

44.

45–50 Find an expression for the function whose graph is the
given curve.

45. The line segment joining the points and 

46. The line segment joining the points and 

The bottom half of the parabola 

48. The top half of the circle 

49. 50.

51–55 Find a formula for the described function and state its
domain.

51. A rectangle has perimeter 20 m. Express the area of the rect-
angle as a function of the length of one of its sides.

y

0 x

1

1

y

0 x

1

1

x 2 % #y " 2"2 ! 4

x % #y " 1"2 ! 047.

#7, "10"#"5, 10"

#5, 7"#1, "3"

f #x" ! %x % 9
"2x
"6

if x # "3
if & x & & 3
if x $ 3

f #x" ! %x % 2
x 2

if x & "1
if x $ "1

43.

f #x" ! %3 " 1
2 x

2x " 5
if x & 2
if x $ 2

f #x" ! %x % 2
1 " x

if x # 0
if x ' 0

t#x" ! & x &
x 2G#x" !

3x % & x &
x

39.

F#x" ! & 2x % 1 &t#x" ! sx " 5 

H#t" !
4 " t 2

2 " t
f #t" ! t 2 " 6t 

F #x" ! 1
2#x % 3"f #x" ! 5 

h#x" ! s4 " x 2 

h#x" !
1

s4 x 2 " 5x 31.
the horizontal distance traveled and be the altitude of the
plane.
(a) Sketch a possible graph of .
(b) Sketch a possible graph of .
(c) Sketch a possible graph of the ground speed.
(d) Sketch a possible graph of the vertical velocity.

19. The number N (in millions) of cellular phone subscribers
worldwide is shown in the table. (Midyear estimates are given.)

(a) Use the data to sketch a rough graph of N as a function of 
(b) Use your graph to estimate the number of cell-phone sub-

scribers at midyear in 1995 and 1999.

20. Temperature readings (in °F) were recorded every two hours
from midnight to 2:00 PM in Dallas on June 2, 2001. The time 

was measured in hours from midnight.

(a) Use the readings to sketch a rough graph of as a function
of 

(b) Use your graph to estimate the temperature at 11:00 AM.

21. If , find , , , ,
, , , , and .

22. A spherical balloon with radius r inches has volume
. Find a function that represents the amount of air

required to inflate the balloon from a radius of r inches to a
radius of r % 1 inches.

23–26 Evaluate the difference quotient for the given function.
Simplify your answer.

,

24. ,

25. ,

26. ,

27–31 Find the domain of the function.

27. 28.

29. 30. t#u" ! su % s4 " u f #t" ! st % s3 t 

f #x" !
5x % 4

x 2 % 3x % 2
f #x" !

x
3x " 1

f #x" " f #1"
x " 1

f #x" !
x % 3
x % 1

f #x" " f #a"
x " a

f #x" !
1
x

f #a % h" " f #a"
h

f #x" ! x 3

f #3 % h" " f #3"
h

f #x" ! 4 % 3x " x 223.

V#r" ! 4
3 (r 3

  f #a % h"[ f #a"]2,  f #a2"  f #2a"2 f #a"f #a % 1"
  f #"a"  f #a"  f #"2"f #2"f #x" ! 3x 2 " x % 2

t.
T

t

T

t.

y#t"
x#t"

y#t"

t 1990 1992 1994 1996 1998 2000

N 11 26 60 160 340 650

t 0 2 4 6 8 10 12 14

T 73 73 70 69 72 81 88 91
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(b) How much tax is assessed on an income of $14,000? 
On $26,000?

(c) Sketch the graph of the total assessed tax T as a function of
the income I.

60. The functions in Example 10 and Exercises 58 and 59(a) are
called step functions because their graphs look like stairs. Give
two other examples of step functions that arise in everyday life.

61–62 Graphs of and are shown. Decide whether each function
is even, odd, or neither. Explain your reasoning.

61. 62.

63. (a) If the point is on the graph of an even function, what
other point must also be on the graph?

(b) If the point is on the graph of an odd function, what
other point must also be on the graph?

64. A function has domain and a portion of its graph is
shown.
(a) Complete the graph of if it is known that is even.
(b) Complete the graph of if it is known that is odd.

65–70 Determine whether is even, odd, or neither. If you have a
graphing calculator, use it to check your answer visually.

65. 66.

67. 68.

69. 70. f #x" ! 1 % 3x 3 " x 5f #x" ! 1 % 3x 2 " x 4

f #x" ! x & x &f #x" !
x

x % 1

f #x" !
x 2

x 4 % 1
f #x" !

x
x 2 % 1

f

x0

y

5_5

ff
ff

!"5, 5$f

#5, 3"

#5, 3"

y

x

f

g

y

x

f
g

tf

52. A rectangle has area 16 m . Express the perimeter of the rect-
angle as a function of the length of one of its sides.

53. Express the area of an equilateral triangle as a function of the
length of a side.

54. Express the surface area of a cube as a function of its volume.

An open rectangular box with volume 2 m has a square base.
Express the surface area of the box as a function of the length
of a side of the base.

56. A Norman window has the shape of a rectangle surmounted by
a semicircle. If the perimeter of the window is 30 ft, express
the area of the window as a function of the width of the
window.

57. A box with an open top is to be constructed from a rectangular
piece of cardboard with dimensions 12 in. by 20 in. by cutting
out equal squares of side at each corner and then folding up
the sides as in the figure. Express the volume of the box as a
function of .

58. A taxi company charges two dollars for the first mile (or part 
of a mile) and 20 cents for each succeeding tenth of a mile (or
part). Express the cost (in dollars) of a ride as a function of
the distance traveled (in miles) for , and sketch the
graph of this function.

In a certain country, income tax is assessed as follows. There is
no tax on income up to $10,000. Any income over $10,000 is
taxed at a rate of 10%, up to an income of $20,000. Any income
over $20,000 is taxed at 15%.
(a) Sketch the graph of the tax rate R as a function of the

income I.

59.
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MATHEMATICAL MODELS: A CATALOG OF ESSENTIAL FUNCTIONS

A mathematical model is a mathematical description (often by means of a function or an
equation) of a real-world phenomenon such as the size of a population, the demand for a
product, the speed of a falling object, the concentration of a product in a chemical reac-
tion, the life expectancy of a person at birth, or the cost of emission reductions. The pur-
pose of the model is to understand the phenomenon and perhaps to make predictions about
future behavior.

Figure 1 illustrates the process of mathematical modeling. Given a real-world problem,
our first task is to formulate a mathematical model by identifying and naming the inde-
pendent and dependent variables and making assumptions that simplify the phenomenon
enough to make it mathematically tractable. We use our knowledge of the physical situa-
tion and our mathematical skills to obtain equations that relate the variables. In situations
where there is no physical law to guide us, we may need to collect data (either from a
library or the Internet or by conducting our own experiments) and examine the data in the
form of a table in order to discern patterns. From this numerical representation of a func-
tion we may wish to obtain a graphical representation by plotting the data. The graph
might even suggest a suitable algebraic formula in some cases.

The second stage is to apply the mathematics that we know (such as the calculus that
will be developed throughout this book) to the mathematical model that we have formu-
lated in order to derive mathematical conclusions. Then, in the third stage, we take those
mathematical conclusions and interpret them as information about the original real-world
phenomenon by way of offering explanations or making predictions. The final step is to
test our predictions by checking against new real data. If the predictions don’t compare
well with reality, we need to refine our model or to formulate a new model and start the
cycle again.

A mathematical model is never a completely accurate representation of a physical situ-
ation—it is an idealization. A good model simplifies reality enough to permit mathemati-
cal calculations but is accurate enough to provide valuable conclusions. It is important to
realize the limitations of the model. In the end, Mother Nature has the final say.

There are many different types of functions that can be used to model relationships
observed in the real world. In what follows, we discuss the behavior and graphs of these 
functions and give examples of situations appropriately modeled by such functions.

LINEAR MODELS

When we say that y is a linear function of x, we mean that the graph of the function is a
line, so we can use the slope-intercept form of the equation of a line to write a formula for
the function as

where m is the slope of the line and b is the y-intercept.

y ! f #x" ! mx % b

FIGURE 1 The modeling process

Real-world
problem

Mathematical
model

Real-world
predictions

Mathematical
conclusions

Test

Formulate Solve Interpret

1.2
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N The coordinate geometry of lines is reviewed
in Appendix B.



A characteristic feature of linear functions is that they grow at a constant rate. For
instance, Figure 2 shows a graph of the linear function and a table of sam-
ple values. Notice that whenever x increases by 0.1, the value of increases by 0.3. So

increases three times as fast as x. Thus the slope of the graph , namely 3, can
be interpreted as the rate of change of y with respect to x.

EXAMPLE 1
(a) As dry air moves upward, it expands and cools. If the ground temperature is 
and the temperature at a height of 1 km is , express the temperature T (in °C) as a
function of the height h (in kilometers), assuming that a linear model is appropriate.
(b) Draw the graph of the function in part (a). What does the slope represent?
(c) What is the temperature at a height of 2.5 km?

SOLUTION
(a) Because we are assuming that T is a linear function of h, we can write

We are given that when , so

In other words, the y-intercept is .
We are also given that when , so

The slope of the line is therefore and the required linear function is

(b) The graph is sketched in Figure 3. The slope is , and this represents
the rate of change of temperature with respect to height.

(c) At a height of , the temperature is

M

If there is no physical law or principle to help us formulate a model, we construct an
empirical model, which is based entirely on collected data. We seek a curve that “fits” the
data in the sense that it captures the basic trend of the data points.

T ! "10#2.5" % 20 ! "5)C

h ! 2.5 km

m ! "10)C'km

T ! "10h % 20

m ! 10 " 20 ! "10

10 ! m ! 1 % 20

h ! 1T ! 10
b ! 20

20 ! m ! 0 % b ! b

h ! 0T ! 20

T ! mh % b

10)C
20)C

V

x

y

0

y=3x-2

_2

FIGURE 2  

y ! 3x " 2f #x"
f #x"

f #x" ! 3x " 2
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1.0 1.0
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EXAMPLE 2 Table 1 lists the average carbon dioxide level in the atmosphere, measured
in parts per million at Mauna Loa Observatory from 1980 to 2002. Use the data in
Table 1 to find a model for the carbon dioxide level.

SOLUTION We use the data in Table 1 to make the scatter plot in Figure 4, where t repre-
sents time (in years) and C represents the level (in parts per million, ppm).

Notice that the data points appear to lie close to a straight line, so it’s natural to
choose a linear model in this case. But there are many possible lines that approximate
these data points, so which one should we use? From the graph, it appears that one possi-
bility is the line that passes through the first and last data points. The slope of this line is

and its equation is

or

Equation 1 gives one possible linear model for the carbon dioxide level; it is graphed
in Figure 5.

Although our model fits the data reasonably well, it gives values higher than most of
the actual levels. A better linear model is obtained by a procedure from statistics CO2

Linear model through
first and last data points

FIGURE 5
340
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C
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C ! 1.5545t " 2739.211
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2002 " 1980

!
34.2
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FIGURE 4 Scatter plot for the average CO™ level
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TABLE 1

level level
Year (in ppm) Year (in ppm)

1980 338.7 1992 356.4
1982 341.1 1994 358.9
1984 344.4 1996 362.6
1986 347.2 1998 366.6
1988 351.5 2000 369.4
1990 354.2 2002 372.9

CO2CO2



called linear regression. If we use a graphing calculator, we enter the data from Table 1
into the data editor and choose the linear regression command. (With Maple we use the
fit[leastsquare] command in the stats package; with Mathematica we use the Fit com-
mand.) The machine gives the slope and y-intercept of the regression line as

So our least squares model for the level is

In Figure 6 we graph the regression line as well as the data points. Comparing with
Figure 5, we see that it gives a better fit than our previous linear model.

M

EXAMPLE 3 Use the linear model given by Equation 2 to estimate the average 
level for 1987 and to predict the level for the year 2010. According to this model, when
will the level exceed 400 parts per million?

SOLUTION Using Equation 2 with t ! 1987, we estimate that the average level in 1987
was

This is an example of interpolation because we have estimated a value between observed
values. (In fact, the Mauna Loa Observatory reported that the average level in 1987
was 348.93 ppm, so our estimate is quite accurate.)

With , we get

So we predict that the average level in the year 2010 will be 384.8 ppm. This is 
an example of extrapolation because we have predicted a value outside the region of
observations. Consequently, we are far less certain about the accuracy of our prediction.

Using Equation 2, we see that the level exceeds 400 ppm when

Solving this inequality, we get

t $
3134.55
1.55192

( 2019.79

1.55192t " 2734.55 $ 400

CO2

CO2

C#2010" ! #1.55192"#2010" " 2734.55 ( 384.81

t ! 2010

CO2

C#1987" ! #1.55192"#1987" " 2734.55 ( 349.12

CO2

CO2

CO2V

FIGURE 6
The regression line

340

350

360

1980 1985 1990

C

t1995 2000

370

C ! 1.55192t " 2734.552

CO2

b ! "2734.55m ! 1.55192
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N A computer or graphing calculator finds the
regression line by the method of least squares,
which is to minimize the sum of the squares of the
vertical distances between the data points and the
line. The details are explained in Section 14.7.



We therefore predict that the level will exceed 400 ppm by the year 2019. This 
prediction is somewhat risky because it involves a time quite remote from our 
observations. M

POLYNOMIALS

A function is called a polynomial if

where is a nonnegative integer and the numbers are constants called the
coefficients of the polynomial. The domain of any polynomial is If the 
leading coefficient , then the degree of the polynomial is . For example, the 
function

is a polynomial of degree 6.
A polynomial of degree 1 is of the form and so it is a linear function.

A polynomial of degree 2 is of the form and is called a quadratic
function. Its graph is always a parabola obtained by shifting the parabola , as we
will see in the next section. The parabola opens upward if and downward if .
(See Figure 7.)

A polynomial of degree 3 is of the form

and is called a cubic function. Figure 8 shows the graph of a cubic function in part (a) and
graphs of polynomials of degrees 4 and 5 in parts (b) and (c). We will see later why the
graphs have these shapes.

FIGURE 8 (a) y=˛-x+1
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(b) y=x$-3≈+x
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1

#a " 0"P#x" ! ax 3 % bx 2 % cx % d

The graphs of quadratic
 functions are parabolas.

FIGURE 7 0
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y ! ax 2

P#x" ! ax 2 % bx % c
P#x" ! mx % b
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Polynomials are commonly used to model various quantities that occur in the natural
and social sciences. For instance, in Section 3.7 we will explain why economists often use
a polynomial to represent the cost of producing units of a commodity. In the follow-
ing example we use a quadratic function to model the fall of a ball.

EXAMPLE 4 A ball is dropped from the upper observation deck of the CN Tower, 450 m
above the ground, and its height h above the ground is recorded at 1-second intervals in
Table 2. Find a model to fit the data and use the model to predict the time at which the
ball hits the ground.

SOLUTION We draw a scatter plot of the data in Figure 9 and observe that a linear model is
inappropriate. But it looks as if the data points might lie on a parabola, so we try a quad-
ratic model instead. Using a graphing calculator or computer algebra system (which uses
the least squares method), we obtain the following quadratic model:

In Figure 10 we plot the graph of Equation 3 together with the data points and see
that the quadratic model gives a very good fit.

The ball hits the ground when , so we solve the quadratic equation

The quadratic formula gives

The positive root is , so we predict that the ball will hit the ground after about
9.7 seconds. M

POWER FUNCTIONS

A function of the form , where is a constant, is called a power function. We
consider several cases.

af #x" ! xa

t ( 9.67

t !
"0.96 + s#0.96"2 " 4#"4.90"#449.36"

2#"4.90"

"4.90t 2 % 0.96t % 449.36 ! 0

h ! 0

FIGURE 10
Quadratic model for a falling ball
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Scatter plot for a falling ball
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TABLE 2

Time Height
(seconds) (meters)

0 450
1 445
2 431
3 408
4 375
5 332
6 279
7 216
8 143
9 61



(i) , where n is a positive integer
The graphs of for , and are shown in Figure 11. (These are poly-
nomials with only one term.) We already know the shape of the graphs of (a line
through the origin with slope 1) and [a parabola, see Example 2(b) in Section 1.1].

The general shape of the graph of depends on whether is even or odd. If 
is even, then is an even function and its graph is similar to the parabola .
If is odd, then is an odd function and its graph is similar to that of .
Notice from Figure 12, however, that as increases, the graph of becomes flatter
near 0 and steeper when . (If is small, then is smaller, is even smaller, 
is smaller still, and so on.)

(ii) , where n is a positive integer
The function is a root function. For it is the square root func-
tion , whose domain is and whose graph is the upper half of the 
parabola . [See Figure 13(a).] For other even values of n, the graph of is
similar to that of . For we have the cube root function whose
domain is (recall that every real number has a cube root) and whose graph is shown in
Figure 13(b). The graph of for n odd is similar to that of .

(b) ƒ=Œ„x

x

y

0
(1, 1)

(a) ƒ=œ„x

x

y

0
(1, 1)

FIGURE 13
Graphs of root functions
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(iii)

The graph of the reciprocal function is shown in Figure 14. Its graph
has the equation , or , and is a hyperbola with the coordinate axes as its
asymptotes. This function arises in physics and chemistry in connection with Boyle’s
Law, which says that, when the temperature is constant, the volume of a gas is
inversely proportional to the pressure :

where C is a constant. Thus the graph of V as a function of P (see Figure 15) has the
same general shape as the right half of Figure 14.

Another instance in which a power function is used to model a physical phenomenon
is discussed in Exercise 26.

RATIONAL FUNCTIONS

A rational function is a ratio of two polynomials:

where and are polynomials. The domain consists of all values of such that .
A simple example of a rational function is the function , whose domain is

; this is the reciprocal function graphed in Figure 14. The function

is a rational function with domain . Its graph is shown in Figure 16.

ALGEBRAIC FUNCTIONS

A function is called an algebraic function if it can be constructed using algebraic oper-
ations (such as addition, subtraction, multiplication, division, and taking roots) starting
with polynomials. Any rational function is automatically an algebraic function. Here are
two more examples:

t!x" !
x 4 $ 16x 2

x % sx % !x $ 2"s3 x % 1f !x" ! sx 2 % 1

f

&x % x " &2'

f !x" !
2x 4 $ x 2 % 1

x 2 $ 4

&x % x " 0'
f !x" ! 1$x

Q!x" " 0xQP

f !x" !
P!x"
Q!x"

f

P

V

0
FIGURE 15

Volume as a function of pressure
at constant temperature

V !
C
P

P
V

xy ! 1y ! 1$x
f !x" ! x$1 ! 1$x

a ! $1
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FIGURE 14
The reciprocal function
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When we sketch algebraic functions in Chapter 4, we will see that their graphs can assume
a variety of shapes. Figure 17 illustrates some of the possibilities.

An example of an algebraic function occurs in the theory of relativity. The mass of a
particle with velocity is

where is the rest mass of the particle and km$s is the speed of light in
a vacuum.

TRIGONOMETRIC FUNCTIONS

Trigonometry and the trigonometric functions are reviewed on Reference Page 2 and also
in Appendix D. In calculus the convention is that radian measure is always used (except
when otherwise indicated). For example, when we use the function , it is under-
stood that means the sine of the angle whose radian measure is . Thus the graphs of
the sine and cosine functions are as shown in Figure 18.

Notice that for both the sine and cosine functions the domain is and the range
is the closed interval . Thus, for all values of , we have

or, in terms of absolute values,

Also, the zeros of the sine function occur at the integer multiples of ; that is,

n an integerx ! n'whensin x ! 0

'

% cos x % ( 1% sin x % ( 1

$1 ( cos x ( 1$1 ( sin x ( 1

x#$1, 1(
!$", ""
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c ! 3.0 ) 105m0
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An important property of the sine and cosine functions is that they are periodic func-
tions and have period . This means that, for all values of ,

The periodic nature of these functions makes them suitable for modeling repetitive phe-
nomena such as tides, vibrating springs, and sound waves. For instance, in Example 4 in
Section 1.3 we will see that a reasonable model for the number of hours of daylight in
Philadelphia t days after January 1 is given by the function

The tangent function is related to the sine and cosine functions by the equation

and its graph is shown in Figure 19. It is undefined whenever , that is, when
, Its range is . Notice that the tangent function has period :

The remaining three trigonometric functions (cosecant, secant, and cotangent) are 
the reciprocals of the sine, cosine, and tangent functions. Their graphs are shown in
Appendix D.

EXPONENTIAL FUNCTIONS

The exponential functions are the functions of the form , where the base is a
positive constant. The graphs of and are shown in Figure 20. In both
cases the domain is and the range is .

Exponential functions will be studied in detail in Section 1.5, and we will see that they
are useful for modeling many natural phenomena, such as population growth (if )
and radioactive decay (if a * 1".

a ! 1

FIGURE 20 (a) y=2® (b) y=(0.5)®
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LOGARITHMIC FUNCTIONS

The logarithmic functions , where the base is a positive constant, are the
inverse functions of the exponential functions. They will be studied in Section 1.6. Fig-
ure 21 shows the graphs of four logarithmic functions with various bases. In each case the
domain is , the range is , and the function increases slowly when .

TRANSCENDENTAL FUNCTIONS

These are functions that are not algebraic. The set of transcendental functions includes the
trigonometric, inverse trigonometric, exponential, and logarithmic functions, but it also
includes a vast number of other functions that have never been named. In Chapter 11 we
will study transcendental functions that are defined as sums of infinite series.

EXAMPLE 5 Classify the following functions as one of the types of functions that we
have discussed.
(a) (b)

(c) (d)

SOLUTION
(a) is an exponential function. (The is the exponent.)

(b) is a power function. (The is the base.) We could also consider it to be a
polynomial of degree 5.

(c) is an algebraic function.

(d) is a polynomial of degree 4. Mu!t" ! 1 $ t % 5t 4

h!x" !
1 % x

1 $ sx 

xt!x" ! x 5

xf !x" ! 5x

u!t" ! 1 $ t % 5t 4h!x" !
1 % x

1 $ sx 

t!x" ! x 5f !x" ! 5x

x ! 1!$", ""!0, ""

af !x" ! loga x
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FIGURE 21
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1–2 Classify each function as a power function, root function,
polynomial (state its degree), rational function, algebraic function,
trigonometric function, exponential function, or logarithmic 
function.

1. (a) (b)

(c) (d)

(e) (f)

2. (a) (b)

(c) (d)

(e) (f) y ! cos + % sin +y ! 2t 6 % t 4 $ '

y ! x 10y ! 10 x

y ! x %
x 2

sx $ 1
y !

x $ 6
x % 6

t !x" ! log10 xs!x" ! tan 2x

r!x" !
x 2 % 1
x 3 % x

h!x" ! x 9 % x 4

t!x" ! s1 $ x 2 f !x" ! s5 x 
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12. The manager of a weekend flea market knows from past
experience that if he charges dollars for a rental space at the
market, then the number of spaces he can rent is given by
the equation .
(a) Sketch a graph of this linear function. (Remember that the

rental charge per space and the number of spaces rented
can’t be negative quantities.)

(b) What do the slope, the y-intercept, and the x-intercept of
the graph represent?

13. The relationship between the Fahrenheit and Celsius 
temperature scales is given by the linear function

.
(a) Sketch a graph of this function.
(b) What is the slope of the graph and what does it represent?

What is the F-intercept and what does it represent?

14. Jason leaves Detroit at 2:00 PM and drives at a constant speed
west along I-96. He passes Ann Arbor, 40 mi from Detroit, at
2:50 PM.
(a) Express the distance traveled in terms of the time elapsed.
(b) Draw the graph of the equation in part (a).
(c) What is the slope of this line? What does it represent?

Biologists have noticed that the chirping rate of crickets of a
certain species is related to temperature, and the relationship
appears to be very nearly linear. A cricket produces 113 chirps
per minute at and 173 chirps per minute at .
(a) Find a linear equation that models the temperature T as a

function of the number of chirps per minute N.
(b) What is the slope of the graph? What does it represent?
(c) If the crickets are chirping at 150 chirps per minute, esti-

mate the temperature.

16. The manager of a furniture factory finds that it costs $2200 
to manufacture 100 chairs in one day and $4800 to produce
300 chairs in one day.
(a) Express the cost as a function of the number of chairs

produced, assuming that it is linear. Then sketch the
graph.

(b) What is the slope of the graph and what does it represent?
(c) What is the y-intercept of the graph and what does it 

represent?

At the surface of the ocean, the water pressure is the same as
the air pressure above the water, . Below the surface,
the water pressure increases by for every 10 ft of
descent.
(a) Express the water pressure as a function of the depth

below the ocean surface.
(b) At what depth is the pressure ?100 lb$in2

4.34 lb$in2
15 lb$in2

17.

80,F70,F

15.

F ! 9
5 C % 32

!C"!F"

y ! 200 $ 4x
y

x
4. (a) (b)

(c) (d)

(a) Find an equation for the family of linear functions with
slope 2 and sketch several members of the family.

(b) Find an equation for the family of linear functions such
that and sketch several members of the family.

(c) Which function belongs to both families?

6. What do all members of the family of linear functions
have in common? Sketch several mem-

bers of the family.

7. What do all members of the family of linear functions
have in common? Sketch several members of 

the family.

8. Find expressions for the quadratic functions whose graphs are
shown.

9. Find an expression for a cubic function if and
.

10. Recent studies indicate that the average surface tempera-
ture of the earth has been rising steadily. Some scientists 
have modeled the temperature by the linear function

, where is temperature in and repre-
sents years since 1900.
(a) What do the slope and -intercept represent?
(b) Use the equation to predict the average global surface

temperature in 2100.

11. If the recommended adult dosage for a drug is (in mg),
then to determine the appropriate dosage for a child of 
age , pharmacists use the equation .
Suppose the dosage for an adult is 200 mg.
(a) Find the slope of the graph of . What does it represent?
(b) What is the dosage for a newborn?

c

c ! 0.0417D!a % 1"a
c

D

T

t,CTT ! 0.02t % 8.50

f !$1" ! f !0" ! f !2" ! 0
f !1" ! 6f

y

(0, 1)

(1, _2.5)

(_2, 2)
y

x0

(4, 2)

f

g
x0

3

f !x" ! c $ x

f !x" ! 1 % m!x % 3"

f !2" ! 1

5.

G

f

g

F
y

x

y ! s3 x y ! x 3
y ! 3xy ! 3x
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(b) Find and graph a linear model using the first and last data
points.

(c) Find and graph the least squares regression line.
(d) Use the linear model in part (c) to estimate the ulcer rate

for an income of $25,000.
(e) According to the model, how likely is someone with an

income of $80,000 to suffer from peptic ulcers?
(f) Do you think it would be reasonable to apply the model

to someone with an income of $200,000?

; 22. Biologists have observed that the chirping rate of crickets of
a certain species appears to be related to temperature. The
table shows the chirping rates for various temperatures.

(a) Make a scatter plot of the data.
(b) Find and graph the regression line.
(c) Use the linear model in part (b) to estimate the chirping

rate at .

; 23. The table gives the winning heights for the Olympic pole
vault competitions in the 20th century.

(a) Make a scatter plot and decide whether a linear model is
appropriate.

(b) Find and graph the regression line.
(c) Use the linear model to predict the height of the winning

pole vault at the 2000 Olympics and compare with the
actual winning height of 19.36 feet.

(d) Is it reasonable to use the model to predict the winning
height at the 2100 Olympics?

100,F

18. The monthly cost of driving a car depends on the number of
miles driven. Lynn found that in May it cost her $380 to drive
480 mi and in June it cost her $460 to drive 800 mi.
(a) Express the monthly cost as a function of the distance

driven assuming that a linear relationship gives a suit-
able model.

(b) Use part (a) to predict the cost of driving 1500 miles per
month.

(c) Draw the graph of the linear function. What does the
slope represent?

(d) What does the y-intercept represent?
(e) Why does a linear function give a suitable model in this 

situation?

19–20 For each scatter plot, decide what type of function you
might choose as a model for the data. Explain your choices.

19. (a) (b)

20. (a) (b)

; 21. The table shows (lifetime) peptic ulcer rates (per 100 popula-
tion) for various family incomes as reported by the National
Health Interview Survey.

(a) Make a scatter plot of these data and decide whether a 
linear model is appropriate.

0 x

y

0 x

y

0 x

y

0 x

y

d,
C
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Ulcer rate
Income (per 100 population)

$4,000 14.1
$6,000 13.0
$8,000 13.4

$12,000 12.5
$16,000 12.0
$20,000 12.4
$30,000 10.5
$45,000 9.4
$60,000 8.2

Year Height (ft) Year Height (ft)

1900 10.83 1956 14.96
1904 11.48 1960 15.42
1908 12.17 1964 16.73
1912 12.96 1968 17.71
1920 13.42 1972 18.04
1924 12.96 1976 18.04
1928 13.77 1980 18.96
1932 14.15 1984 18.85
1936 14.27 1988 19.77
1948 14.10 1992 19.02
1952 14.92 1996 19.42

Temperature Chirping rate Temperature Chirping rate
(°F) (chirps$min) (°F)  (chirps$min)

50 20 75 140
55 46 80 173
60 79 85 198
65 91 90 211
70 113



; 26. The table shows the mean (average) distances d of the planets
from the sun (taking the unit of measurement to be the 
distance from the earth to the sun) and their periods T (time
of revolution in years).

(a) Fit a power model to the data.
(b) Kepler’s Third Law of Planetary Motion states that

“The square of the period of revolution of a planet is
proportional to the cube of its mean distance from the
sun.” 

Does your model corroborate Kepler’s Third Law?

; 24. A study by the US Office of Science and Technology in 
1972 estimated the cost (in 1972 dollars) to reduce auto-
mobile emissions by certain percentages:

Find a model that captures the “diminishing returns” trend of
these data.

; 25. Use the data in the table to model the population of the world
in the 20th century by a cubic function. Then use your model
to estimate the population in the year 1925.
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Planet d T

Mercury 0.387 0.241

Venus 0.723 0.615

Earth 1.000 1.000

Mars 1.523 1.881

Jupiter 5.203 11.861

Saturn 9.541 29.457

Uranus 19.190 84.008

Neptune 30.086 164.784

Reduction in Cost per Reduction in Cost per
emissions (%)  car (in $) emissions (%)  car (in $)

50 45 75 90
55 55 80 100
60 62 85 200
65 70 90 375
70 80 95 600

Population Population
Year (millions) Year (millions)

1900 1650 1960 3040
1910 1750 1970 3710
1920 1860 1980 4450
1930 2070 1990 5280
1940 2300 2000 6080
1950 2560

NEW FUNCTIONS FROM OLD FUNCTIONS

In this section we start with the basic functions we discussed in Section 1.2 and obtain new
functions by shifting, stretching, and reflecting their graphs. We also show how to combine
pairs of functions by the standard arithmetic operations and by composition.

TRANSFORMATIONS OF FUNCTIONS

By applying certain transformations to the graph of a given function we can obtain the
graphs of certain related functions. This will give us the ability to sketch the graphs of
many functions quickly by hand. It will also enable us to write equations for given graphs.
Let’s first consider translations. If c is a positive number, then the graph of is
just the graph of shifted upward a distance of c units (because each y-coordinate
is increased by the same number c). Likewise, if , where , then the
value of at x is the same as the value of at (c units to the left of x). Therefore,
the graph of is just the graph of shifted units to the right (see
Figure 1).

VERTICAL AND HORIZONTAL SHIFTS Suppose . To obtain the graph of

 y ! f !x % c", shift the graph of y ! f !x" a distance c units to the left

 y ! f !x $ c", shift the graph of y ! f !x" a distance c units to the right

 y ! f !x" $ c, shift the graph of y ! f !x" a distance c units downward

 y ! f !x" % c, shift the graph of y ! f !x" a distance c units upward

c ! 0

cy ! f !x"y ! f !x $ c"
x $ cft

c ! 0t!x" ! f !x $ c"
y ! f !x"

y ! f !x" % c

1.3



Now let’s consider the stretching and reflecting transformations. If , then the
graph of is the graph of stretched by a factor of c in the vertical 
direction (because each y-coordinate is multiplied by the same number c). The graph of

is the graph of reflected about the -axis because the point is
replaced by the point . (See Figure 2 and the following chart, where the results of
other stretching, compressing, and reflecting transformations are also given.)

VERTICAL AND HORIZONTAL STRETCHING AND REFLECTING Suppose . To
obtain the graph of

Figure 3 illustrates these stretching transformations when applied to the cosine function
with . For instance, in order to get the graph of we multiply the y-coor-
dinate of each point on the graph of by 2. This means that the graph of 
gets stretched vertically by a factor of 2.

FIGURE 3
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y ! cos xy ! cos x
y ! 2 cos xc ! 2

 y ! f !$x", reflect the graph of y ! f !x" about the y-axis

 y ! $f !x", reflect the graph of y ! f !x" about the x-axis

 y ! f !x$c", stretch the graph of y ! f !x" horizontally by a factor of c

 y ! f !cx", compress the graph of y ! f !x" horizontally by a factor of c

 y ! !1$c" f !x", compress the graph of y ! f !x" vertically by a factor of c

 y ! cf !x", stretch the graph of y ! f !x" vertically by a factor of c

c ! 1

!x, $y"
!x, y"xy ! f !x"y ! $f !x"

y ! f !x"y ! cf !x"
c ! 1

FIGURE 2
Stretching and reflecting the graph of ƒ
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FIGURE 1
Translating the graph of ƒ

x

y

0

y=f(x-c)y=f(x+c) y =ƒ

y=ƒ-c

y=ƒ+c

c

c

c c

38 | | | | CHAPTER 1 FUNCTIONS AND MODELS



EXAMPLE 1 Given the graph of , use transformations to graph ,
, , , and .

SOLUTION The graph of the square root function , obtained from Figure 13(a) 
in Section 1.2, is shown in Figure 4(a). In the other parts of the figure we sketch

by shifting 2 units downward, by shifting 2 units to the right,
by reflecting about the -axis, by stretching vertically by a factor 

of 2, and by reflecting about the -axis.

M

EXAMPLE 2 Sketch the graph of the function .

SOLUTION Completing the square, we write the equation of the graph as

This means we obtain the desired graph by starting with the parabola and shifting
3 units to the left and then 1 unit upward (see Figure 5).

M

EXAMPLE 3 Sketch the graphs of the following functions.
(a) (b)

SOLUTION
(a) We obtain the graph of from that of by compressing horizon-
tally by a factor of 2 (see Figures 6 and 7). Thus, whereas the period of is ,
the period of is .

FIGURE 6
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FIGURE 7
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yy ! s$x 
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y ! sx $ 2 y ! sx $ 2
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y ! s$x y ! 2sx y ! $sx y ! sx $ 2 
y ! sx $ 2y ! sx V
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FIGURE 4



(b) To obtain the graph of , we again start with . We reflect 
about the -axis to get the graph of and then we shift 1 unit upward to get

(See Figure 8.)

M

EXAMPLE 4 Figure 9 shows graphs of the number of hours of daylight as functions of the
time of the year at several latitudes. Given that Philadelphia is located at approximately

latitude, find a function that models the length of daylight at Philadelphia.

SOLUTION Notice that each curve resembles a shifted and stretched sine function. By look-
ing at the blue curve we see that, at the latitude of Philadelphia, daylight lasts about
14.8 hours on June 21 and 9.2 hours on December 21, so the amplitude of the curve (the
factor by which we have to stretch the sine curve vertically) is .

By what factor do we need to stretch the sine curve horizontally if we measure the
time t in days? Because there are about 365 days in a year, the period of our model
should be 365. But the period of is , so the horizontal stretching factor is

.
We also notice that the curve begins its cycle on March 21, the 80th day of the year,

so we have to shift the curve 80 units to the right. In addition, we shift it 12 units
upward. Therefore we model the length of daylight in Philadelphia on the t th day of the
year by the function

M

Another transformation of some interest is taking the absolute value of a function. If
, then according to the definition of absolute value, when and
when . This tells us how to get the graph of from the graph

of : The part of the graph that lies above the -axis remains the same; the part that
lies below the -axis is reflected about the -axis.xx

xy ! f !x"
y ! # f !x"#f !x" ! 0y ! "f !x"

f !x" # 0y ! f !x"y ! # f !x"#

L!t" ! 12 $ 2.8 sin$ 2%

365
!t " 80"%

c ! 2%&365
2%y ! sin t

1
2 !14.8 " 9.2" ! 2.8

FIGURE 9
Graph of the length of daylight

from March 21 through December 21
at various latitudes

Lucia C. Harrison, Daylight, Twilight, Darkness and Time  
(New York: Silver, Burdett, 1935) page 40.
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EXAMPLE 5 Sketch the graph of the function .

SOLUTION We first graph the parabola in Figure 10(a) by shifting the parabola
downward 1 unit. We see that the graph lies below the x-axis when ,

so we reflect that part of the graph about the x-axis to obtain the graph of 
in Figure 10(b). M

COMBINATIONS OF FUNCTIONS

Two functions and can be combined to form new functions , , , and in
a manner similar to the way we add, subtract, multiply, and divide real numbers. The sum
and difference functions are defined by

If the domain of is A and the domain of is B, then the domain of is the intersec-
tion because both and have to be defined. For example, the domain of

is and the domain of is , so the domain
of is .

Similarly, the product and quotient functions are defined by

The domain of is , but we can’t divide by 0 and so the domain of is
. For instance, if and , then the domain of

the rational function is , or .
There is another way of combining two functions to obtain a new function. For 

example, suppose that and . Since y is a function of u
and u is, in turn, a function of x, it follows that is ultimately a function of x. We compute
this by substitution:

The procedure is called composition because the new function is composed of the two
given functions and .

In general, given any two functions and , we start with a number x in the domain of
and find its image . If this number is in the domain of , then we can calculate

the value of . The result is a new function obtained by substituting
into . It is called the composition (or composite) of and and is denoted by 

(“ f circle t”).

DEFINITION Given two functions and , the composite function (also called
the composition of and ) is defined by

The domain of is the set of all in the domain of such that is in the domain
of . In other words, is defined whenever both and are defined. Fig-
ure 11 shows how to picture in terms of machines.f ! t

f !t!x""t!x"! f ! t"!x"f
t!x"txf ! t

! f ! t"!x" ! f !t!x""

tf
f ! ttf

f ! ttfft
h!x" ! f !t!x""f !t!x""

ft!x"t!x"t
tf

tf

y ! f !u" ! f !t!x"" ! f !x 2 $ 1" ! sx 2 $ 1

y
u ! t!x" ! x 2 $ 1y ! f !u" ! su 

!"', 1" ! !1, '"'x # x " 1(! f&t"!x" ! x 2&!x " 1"
t!x" ! x " 1f !x" ! x 2'x " A # B # t!x" " 0(

f&tA # Bft

)  f
t*!x" !

 f !x"
t!x"

! ft"!x" ! f !x"t!x"

A # B ! +0, 2,! f $ t"!x" ! sx $ s2 " x 
B ! !"', 2,t!x" ! s2 " x A ! +0, '"f !x" ! sx 

t!x"f !x"A # B
f $ ttf

 ! f " t"!x" ! f !x" " t!x"! f $ t"!x" ! f !x" $ t!x"

f&tftf " tf $ ttf

y ! # x 2 " 1#
"1 ! x ! 1y ! x 2

y ! x 2 " 1

y ! # x 2 " 1 #V
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FIGURE 10
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EXAMPLE 6 If and , find the composite functions 
and .

SOLUTION We have

M

| You can see from Example 6 that, in general, . Remember, the
notation means that the function is applied first and then is applied second. In
Example 6, is the function that first subtracts 3 and then squares; is the function
that first squares and then subtracts 3.

EXAMPLE 7 If and , find each function and its domain.
(a) (b) (c) (d)

SOLUTION

(a)

The domain of is .

(b)

For to be defined we must have . For to be defined we must have
If , then . , that is, , or . Thus we have , so the domain of

is the closed interval .

(c)

The domain of is .

(d)

This expression is defined when both and The first
inequality means , and the second is equivalent to , or , or

. Thus , so the domain of is the closed interval . M

It is possible to take the composition of three or more functions. For instance, the com-
posite function is found by first applying , then , and then as follows:

EXAMPLE 8 Find if , and .

SOLUTION

M

So far we have used composition to build complicated functions from simpler ones. But
in calculus it is often useful to be able to decompose a complicated function into simpler
ones, as in the following example.

 ! f !!x $ 3"10 " !
!x $ 3"10

!x $ 3"10 $ 1

 ! f ! t ! h"!x" ! f !t!h!x""" ! f !t!x $ 3""

h!x" ! x $ 3f !x" ! x&!x $ 1", t!x" ! x 10f ! t ! h

! f ! t ! h"!x" ! f !t!h!x"""

fthf ! t ! h

+"2, 2,t ! t"2 ( x ( 2x # "2
2 " x ( 4s2 " x ( 2x ( 2

2 " s2 " x # 0.2 " x # 0

!t ! t"!x" ! t!t!x"" ! t(s2 " x ) ! s2 " s2 " x 

+0, '"f ! f

! f ! f "!x" ! f ! f !x"" ! f (sx ) ! ssx ! s4 x 

+0, 4,t ! f
0 ( x ( 4x ( 4sx ( 22 " sx # 0a 2 ( b 20 ( a ( b

s2 " sx x # 0sx 

!t ! f "!x" ! t! f !x"" ! t(sx ) ! s2 " sx 

! 'x # x ( 2( ! !"', 2,'x # 2 " x # 0(f ! t

! f ! t"!x" ! f !t!x"" ! f (s2 " x ) ! ss2 " x ! s4 2 " x 

t ! tf ! ft ! ff ! t
t!x" ! s2 " x f !x" ! sx V

t ! ff ! t
ftf ! t

f ! t " t ! fNOTE

 !t ! f "!x" ! t! f !x"" ! t!x 2 " ! x 2 " 3

 ! f ! t"!x" ! f !t!x"" ! f !x " 3" ! !x " 3"2

t ! f
f ! tt!x" ! x " 3f !x" ! x 2
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EXAMPLE 9 Given , find functions , , and h such that .

SOLUTION Since , the formula for F says: First add 9, then take the
cosine of the result, and finally square. So we let

Then

M ! +cos!x $ 9",2 ! F!x"

 ! f ! t ! h"!x" ! f !t!h!x""" ! f !t!x $ 9"" ! f !cos!x $ 9""

f !x" ! x 2t!x" ! cos xh!x" ! x $ 9

F!x" ! +cos!x $ 9",2

F ! f ! t ! htfF!x" ! cos2!x $ 9"
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(c) (d)

The graph of is given. Use it to graph the following 
functions.
(a) (b)
(c) (d)

6–7 The graph of is given. Use transformations to
create a function whose graph is as shown.

6.

_4 _1

_2.5

x

y

_1 0

7.

5 x

y

20

3

1.5 y=œ„„„„„„3x-≈

x

y

30

y ! s3x " x 2 

x

y

0 1

1

y ! "f !"x"y ! f !"x"
y ! f ( 1

2 x)y ! f !2x"

f5.

x

y

0 1

1

y ! "1
2 f !x" $ 3y ! 2 f !x"Suppose the graph of is given. Write equations for the graphs

that are obtained from the graph of as follows.
(a) Shift 3 units upward.
(b) Shift 3 units downward.
(c) Shift 3 units to the right.
(d) Shift 3 units to the left.
(e) Reflect about the -axis.
(f) Reflect about the -axis.
(g) Stretch vertically by a factor of 3.
(h) Shrink vertically by a factor of 3.

2. Explain how each graph is obtained from the graph of .
(a) (b)
(c) (d)
(e) (f)

3. The graph of is given. Match each equation with its
graph and give reasons for your choices.
(a) (b)
(c) (d)
(e)

4. The graph of is given. Draw the graphs of the following
functions.
(a) (b) y ! f !x" $ 4y ! f !x $ 4"

f

!@

$

%

#f

y

3

_3

6

0 x3_3_6 6

y ! 2 f !x $ 6"
y ! "f !x $ 4"y ! 1

3 f !x"
y ! f !x" $ 3y ! f !x " 4"

y ! f !x"

y ! 5 f !x" " 3y ! f !5x"
y ! "5 f !x"y ! "f !x"
y ! f !x " 5"y ! 5 f !x"

y ! f !x"

y
x

f
f1.

EXERCISES1.3
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29–30 Find , , , and and state their domains.

,

30. ,

31–36 Find the functions (a) , (b) , (c) , and (d) 
and their domains.

31. ,

32. ,

33. ,

34. ,

,

36. ,

37–40 Find 

37. , ,

38. , ,

39. , ,

40. , ,

41–46 Express the function in the form 

41. 42.

43. 44.

45.

47–49 Express the function in the form 

47. 48.

49.

50. Use the table to evaluate each expression.
(a) (b) (c)
(d) (e) (f) ! f ! t"!6"!t ! f "!3"t!t!1""

f ! f !1""t! f !1""f !t!1""

H!x" ! sec4(sx )
H!x" ! s8 2 $ # x #H!x" ! 1 " 3x2

f ! t ! h.

u!t" !
tan t

1 $ tan t
46.u!t" ! scos t 

G!x" ! - x
1 $ x

 3F !x" !
s3 x 

1 $ s3 x 

F!x" ! sin(sx )F!x" ! !x 2 $ 1"10

f ! t.

h!x" ! s3 x t!x" !
x

x " 1
f !x" ! tan x

h!x" ! x 3 $ 2t!x" ! x 2f !x" ! sx " 3 

h!x" ! 1 " xt!x" ! x 2f !x" ! 2x " 1

h!x" ! x " 1t!x" ! 2xf !x" ! x $ 1

f ! t ! h.

t!x" ! sin 2xf !x" !
x

1 $ x

t!x" !
x $ 1
x $ 2

f !x" ! x $
1
x

35.

t!x" ! s3 1 " x f !x" ! sx 

t!x" ! cos xf !x" ! 1 " 3x

t!x" ! x 2 $ 3x $ 4f !x" ! x " 2

t!x" ! 2x $ 1f !x" ! x 2 " 1

t ! tf ! ft ! ff ! t

t!x" ! sx 2 " 1f !x" ! s3 " x

t!x" ! 3x 2 " 1f !x" ! x 3 $ 2x 229.

f&tftf " tf $ t8. (a) How is the graph of related to the graph of
? Use your answer and Figure 6 to sketch the

graph of .
(b) How is the graph of related to the graph of

? Use your answer and Figure 4(a) to sketch the
graph of .

9–24 Graph the function by hand, not by plotting points, but by
starting with the graph of one of the standard functions given in Sec-
tion 1.2, and then applying the appropriate transformations.

9. 10.

11. 12.

13. 14.

16.

17. 18.

19. 20.

21. 22.

23. 24.

25. The city of New Orleans is located at latitude . Use Fig-
ure 9 to find a function that models the number of hours of
daylight at New Orleans as a function of the time of year. To
check the accuracy of your model, use the fact that on March 31
the sun rises at 5:51 AM and sets at 6:18 PM in New Orleans. 

26. A variable star is one whose brightness alternately increases
and decreases. For the most visible variable star, Delta Cephei,
the time between periods of maximum brightness is 5.4 days,
the average brightness (or magnitude) of the star is 4.0, and its
brightness varies by magnitude. Find a function that
models the brightness of Delta Cephei as a function of time.

(a) How is the graph of related to the graph of ?
(b) Sketch the graph of .

(c) Sketch the graph of .

28. Use the given graph of to sketch the graph of .
Which features of are the most important in sketching

? Explain how they are used.

1

10 x

y

y ! 1&f !x"
f

y ! 1&f !x"f

y ! s# x #
y ! sin # x #

fy ! f (# x #)27.

)0.35

30&N

y ! # x 2 " 2x #y ! #sin x #

y !
1
4

 tan)x "
%

4 *y !
2

x $ 1

y ! 1 $ s3 x " 1y ! 1
2 !x 2 $ 8x"

y ! !x $ 2"4 $ 3y ! sx $ 3 

y !
1

x " 4
y ! sin!x&2"15.

y ! 4 sin 3xy ! 1 $ 2 cos x

y ! x 2 " 4x $ 3y ! !x $ 1"2

y ! 1 " x 2y ! "x 3

y ! 1 $ sx 
y ! sx 

y ! 1 $ sx 
y ! 2 sin x

y ! sin x
y ! 2 sin x

x 1 2 3 4 5 6

3 1 4 2 2 5

6 3 2 1 2 3t!x"

f !x"
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57. The Heaviside function H is defined by

It is used in the study of electric circuits to represent the sudden
surge of electric current, or voltage, when a switch is instantane-
ously turned on.
(a) Sketch the graph of the Heaviside function.
(b) Sketch the graph of the voltage in a circuit if the 

switch is turned on at time and 120 volts are applied
instantaneously to the circuit. Write a formula for in
terms of .

(c) Sketch the graph of the voltage in a circuit if the switch
is turned on at time seconds and 240 volts are applied
instantaneously to the circuit. Write a formula for in
terms of . (Note that starting at corresponds to a
translation.)

58. The Heaviside function defined in Exercise 57 can also be used
to define the ramp function , which represents a
gradual increase in voltage or current in a circuit.
(a) Sketch the graph of the ramp function .
(b) Sketch the graph of the voltage in a circuit if the switch

is turned on at time and the voltage is gradually
increased to 120 volts over a 60-second time interval. Write
a formula for in terms of for .

(c) Sketch the graph of the voltage in a circuit if the switch
is turned on at time seconds and the voltage is gradu-
ally increased to 100 volts over a period of 25 seconds.
Write a formula for in terms of for .

59. Let and be linear functions with equations 
and . Is also a linear function? If so, what
is the slope of its graph?

60. If you invest dollars at 4% interest compounded annually, then
the amount of the investment after one year is .
Find , , and . What do these compo-
sitions represent? Find a formula for the composition of 
copies of .

61. (a) If and , find a function
such that . (Think about what operations you

would have to perform on the formula for to end up with
the formula for .)

(b) If and , find a function
such that .

62. If and , find a function such that
.

63. (a) Suppose and are even functions. What can you say about
and ?

(b) What if and are both odd?

64. Suppose is even and is odd. What can you say about ?

Suppose t is an even function and let . Is h always an
even function?

66. Suppose t is an odd function and let . Is h always an
odd function? What if is odd? What if is even?ff

h ! f ! t

h ! f ! t65.

fttf

tf
ftf $ t
tf

t ! f ! h
th!x" ! 4x " 1f !x" ! x $ 4

f ! t ! ht
h!x" ! 3x 2 $ 3x $ 2f !x" ! 3x $ 5

h
t

f ! t ! hf
h!x" ! 4x 2 $ 4x $ 7t!x" ! 2x $ 1

A
n

A ! A ! A ! AA ! A ! AA ! A
A!x" ! 1.04xA!x"

x

f ! tt!x" ! m2 x $ b2

f !x" ! m1x $ b1tf

t ( 32H!t"V!t"

t ! 7
V!t"

t ( 60H!t"V!t"

t ! 0
V!t"

y ! tH!t"

y ! ctH!t"

t ! 5H!t"
V!t"

t ! 5
V!t"

H!t"
V!t"

t ! 0
V!t"

H!t" ! .0
1

if t ! 0
if t # 0

51. Use the given graphs of and to evaluate each expression, 
or explain why it is undefined.
(a) (b) (c)
(d) (e) (f)

52. Use the given graphs of and to estimate the value of
for . Use these estimates to

sketch a rough graph of .

A stone is dropped into a lake, creating a circular ripple that
travels outward at a speed of .
(a) Express the radius of this circle as a function of the 

time (in seconds).
(b) If is the area of this circle as a function of the radius, find

and interpret it.

54. A spherical balloon is being inflated and the radius of the bal-
loon is increasing at a rate of .
(a) Express the radius of the balloon as a function of the time

(in seconds).
(b) If is the volume of the balloon as a function of the radius,

find and interpret it.

55. A ship is moving at a speed of parallel to a straight
shoreline. The ship is 6 km from shore and it passes a light-
house at noon.
(a) Express the distance between the lighthouse and the ship

as a function of , the distance the ship has traveled since
noon; that is, find so that .

(b) Express as a function of , the time elapsed since noon;
that is, find so that .

(c) Find . What does this function represent?

56. An airplane is flying at a speed of at an altitude of
one mile and passes directly over a radar station at time .
(a) Express the horizontal distance (in miles) that the plane

has flown as a function of .
(b) Express the distance between the plane and the radar 

station as a function of .
(c) Use composition to express as a function of .ts

d
s

t
d

t ! 0
350 mi&h

f ! t
d ! t!t"t

td
s ! f !d"f

d
s

30 km&h

V ! r
V

t
r

2 cm&s

A ! r
A

t
r

60 cm&s
53.

g

f

x

y

0 1

1

f ! t
x ! "5, "4, "3, . . . , 5f !t!x""

tf

x

y

0

fg

2

2

! f ! f "!4"!t ! t"!"2"!t ! f "!6"
! f ! t"!0"t! f !0""f !t!2""

tf




